精英家教网 > 初中数学 > 题目详情

【题目】某专卖店经市场调查得知,一种商品的月销售量 Q(单位:吨)与销售价格 x(单位:万元/)的关系可用下图中的折线表示.

(1)写出月销售量 Q 关于销售价格 x 的关系;

(2)如果该商品的进价为 5 万元/吨,除去进货成本外,专卖店销售该商品每月的固定成本为 10 万元,问该商品 每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.

【答案】(1)Q= ;(2)该商品每吨定价9万元时,销售该商品的月利润最大,月利润的最大值为6万元

【解析】

(1)利用待定系数法分别求解可得;

(2)根据月利润w=Q(x-5)-10,分别就5≤x≤88<x≤12两种情况列出函数解析式,配方成顶点式,利用二次函数的性质可得.

(1)当5≤x≤8时,设Q=ax+b,

,解得:

Q=-x+25,

同理可得,当8<x≤12时,Q=-x+13,

Q=

(2)月利润w=Q(x-5)-10,

由(1)知,w=

w=

所以当x=9时,w取得最大值,最大值为6,

答:该商品每吨定价9万元时,销售该商品的月利润最大,月利润的最大值为6万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,大圆的弦ABAC分别切小圆于点MN

1)求证:AB=AC

2AB8,求圆环的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为﹣1,过点C(0,3)的直线y=﹣x+3x轴交于点Q,点P是线段BC上的一个动点,PHOB于点H.若PB=5t,且0<t<1.

(1)确定b,c的值;

(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);

(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

如图(1)∠DAB=90°,求证:a2+b2=c2

证明:连接DB,过点DDFBCBC的延长线于点F,则DF=b-a

S四边形ADCB=

S四边形ADCB=

化简得:a2+b2=c2

请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,DBC边的中点,EAB延长线上的一点,且BE=BD

1)求∠BAD∠BDE的度数;

2)求证:AD=DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BCD,则图中阴影部分的面积为(  )

A. 1 B. 2 C. 1+ D. 2﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一座抛物线形拱桥,正常水位时桥下水面宽为20m,拱顶距水面4m.

(1)在如图的直角坐标系中,求出该抛物线的解析式;

(2)为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水面在正常水位基础上,最多涨多少米,不会影响过往船只?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x﹣1分别交x轴、y轴于点A、B,在第二象限内有一边长为2的正方形CDEF,已知C(﹣1,1),若动点P从C出发以每秒1个单位的速度沿着正方形CDEF的边逆时针运动一周(到达C点后停止运动),设P点运动的时间为t秒.

(1)是否存在t,使得以P为圆心,为半径的圆与直线AB相切?若存在,求出所有t的值;若存在,请说明理由.

(2)在点P运动的同时,直线AB以每秒1个单位的速度向右作匀速运动(与点P同时停止)是否存在t,使得以P为圆心,为半径的圆与平移后的直线A′B′相切?请直接写出所有t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个平面直角坐标系,按要求完成下列各小题.

(1)写出图中的六边形ABCDEF顶点在坐标轴上的点的坐标;

(2)说明点B与点C的纵坐标有什么特点?线段BCx轴有怎样的位置关系?

(3)写出点E关于y轴的对称点E′的坐标,并指出点E′与点C有怎样的位置关系.

查看答案和解析>>

同步练习册答案