【题目】
(1)计算: ;
(2)化简:(a+3)2+a(4﹣a)
【答案】
(1)解:原式=1+4﹣2 =5﹣2
(2)解:原式=a2+6a+9+4a﹣a2=10a+9
【解析】(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.
【考点精析】根据题目的已知条件,利用零指数幂法则和实数的运算的相关知识可以得到问题的答案,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);先算乘方、开方,再算乘除,最后算加减,如果有括号,先算括号里面的,若没有括号,在同一级运算中,要从左到右进行运算.
科目:初中数学 来源: 题型:
【题目】如图1,将一张长方形的纸对折一次,然后沿折痕剪开,可以将这张纸分为两部分:如图2,如果对折两次,然后沿最后一次的折痕剪开,可以将这张纸分为三部分;用同样的操作方法继续下去,如果对折4次,然后沿最后一次的折痕剪开,则可以将它剪成_______部分;如果对折次,沿最后一次的折痕剪开,则可以将它剪成_______ 部分.(最后一空用含的式子表示)
(图1) (图2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)
(1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=;
当顶点坐标为(m,m),m≠0时,a与m之间的关系式是
(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1 , A2 , …,An在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1 , B2 , …,Bn , 以线段AnBn为边向右作正方形AnBnCnDn , 若这组抛物线中有一条经过Dn , 求所有满足条件的正方形边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t秒(t>0).
(1)若点P在BC上,且满足PA=PB,求此时t的值;
(2)若点P恰好在∠ABC的角平分线上,求此时t的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如图两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
(1)m=%,这次共抽取名学生进行调查;并补全条形图;
(2)在这次抽样调查中,采用哪种上学方式的人数最多?
(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xoy中,抛物线y=(m﹣1)x2﹣(3m﹣4)x﹣3与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴是经过(1,0)且与y轴平行的直线,点P是抛物线上的一点,点Q是y轴上一点;
(1)求抛物线的函数关系式;
(2)若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(3)若tan∠PCB= ,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com