精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,DC=,CF⊥BD分别交BD、AD于点E、F,连接BF.
(1)求证:△DEC∽△FDC;
(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.
(1)详见解析;(2)sin∠FBD=;BC=

试题分析:(1)掌握三角形相似的判定方法,其中两角对应相等,两个三角形相似是最常用的方法.
(2)虽是求sin∠FBD,用的知识点都是三角形相似的性质,再用勾股定理,角的正弦公式可求出.
试题解析:证明:(1)∵∠DEC=∠FDC=90°,∠DCE=∠FCD,
∴△DEC∽△FDC.
(2)∵F为AD的中点,AD∥BC,
∴FE:EC=FD:BC=1:2,FB=FC,
∴FE:FC=1:3,
∴sin∠FBD=EF:BF=EF:FC=
设EF=x,则FC=3x,
∵△DEC∽△FDC,
=,即可得:6x2=6,
解得:x=1,
则CF=3,
在Rt△CFD中,DF=
∴BC=2DF=
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

小明从点O出发,沿直线前进10米,向左转n°(0<n<180),再沿直线前进10米,又向左转n°……照这样走下去,小明恰能回到O点,且所走过的路程最短,则n的值等于   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知矩形OABC的A点在x轴上,C点在y轴上,
(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)
(2)求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=时,
①在P1(0,-3),P2(4,6),P3,2)中可以成为正方形ABCD的“等距圆”的圆心的是_______________;
②若点P在直线上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为_______________;
(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P 在y轴上截得的弦长;
②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是_______________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=          
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为       (     )
A.平行四边形B.菱形C.对角线相等的四边形D.对角线垂直的四边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在?ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是      (结果保留π).

查看答案和解析>>

同步练习册答案