【题目】将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.
(1)填空:AB与EF的位置关系是 ;
(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;
(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.
【答案】(1)平行;(2)见解析;(3)存在,S1=2S2,理由见解析.
【解析】
(1)根据等腰直角三角形的性质和平行线的判定方法即可得到结论;
(2)根据等腰直角三角形的性质得到∠B=∠C=45°,再根据三角形的内角和即可得到结论;
(3)连接AD,根据等腰直角三角形的性质和余角的性质可得BD=CD=AD,∠B=∠CAD,∠BDP=∠ADQ,进而可根据ASA证明△BDP≌△ADQ,再根据全等三角形的性质即可得到结论.
解:(1)∵AB=AC,∠BAC=90°,∴∠ABD=∠C=45°,
∵DE=DF,∠EDF=90°,∴∠F=∠E=45°,
∴∠F=∠ ABD,∴AB∥EF;
故答案为:平行;
(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,
∵∠EDF=90°,∴∠BDP+∠CDQ=90°,
∴∠BPD+∠DQC=360°﹣∠B﹣∠C﹣∠BDP﹣∠CDQ=180°;
(3)S1与S2之间存在不变的数量关系:S1=2S2.
理由:连接AD,如图,∵AB=AC,AD⊥BC,
∴BD=CD=AD=BC,∠B=∠C=∠CAD=45°,
∵∠BDP+∠ADP=∠ADP+∠ADQ=90°,
∴∠BDP=∠ADQ,
∴△BDP≌△ADQ(ASA),
∴S△ABD=S△BPD+S△APD=S△ADQ+S△APD=S2,
又∵S△ADB=S1,
∴S1=2S2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过、、三点.
求抛物线的解析式;
如图①,在抛物线的对称轴上是否存在点,使得四边形的周长最小?若存在,求出四边形周长的最小值;若不存在,请说明理由.
如图②,点是线段上一动点,连接,在线段上是否存在这样的点,使为等腰三角形且为直角三角形?若存在,求点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣5,1),B(﹣4,4),C(﹣1,﹣1).
(1)在图1中画出△ABC关于y轴对称的图形△A1B1C1;
(2)直接写出△A1B1C1的面积;
(3)在图2中y轴上找出点P,使PB+PC的值最小(保留作图痕迹).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,直线经过,两点.
求抛物线的解析式;
在上方的抛物线上有一动点.
①如图,当点运动到某位置时,以,为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;
②如图,过点,的直线交于点,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于C、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;(4)S△ABE=3S△AGE.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形MNPQ中,动点R从点N出发,沿着N-P-Q-M方向移动至M停止,设R移动路程为x,MNR面积为y,那么y与x的关系如图②,下列说法不正确的是( )
A.当x=2时,y=5B.矩形MNPQ周长是18
C.当x=6时,y=10D.当y=8时,x=10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:.求作:一个角,使它等于.步骤如下:如图,
(1)作射线
(2)以为圆心,任意长为半径作弧,交于,交于;
(3)以为圆心,为半径作弧,交于;
(4)以为圆心,为半径作弧,交弧于;
(5)过点作射线.则就是所求作的角.
请回答:该作图的依据是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com