精英家教网 > 初中数学 > 题目详情

【题目】有两张完全重合的矩形纸片,将其中一张绕点顺时针旋转后得到矩形(如图1),连接,若

1)试探究线段与线段的数量关系和位置关系,并说明理由;

2)把剪去,将绕点顺时针旋转得,边于点(如图2),设旋转角为,当为等腰三角形时,求的度数;

3)若将沿方向平移得到(如图3),交于点交于点,当时,求平移的距离.

【答案】(1),理由见解析;(2;(3)平移的距离是

【解析】

1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MFBAD≌△MAF,推出BD=MF,∠ADB=AFM=30°,进而可得∠DNM的大小.
2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.
3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用DPN∽△DAB得出对应线段成比例,即可得到A2A的大小.

1)解:

延长于点

根据旋转的性质得:AB=AMAD=AF,∠BAD=MAF=90°

又∵

2)解:如图2,

①当时,

,即

②当时,

,即

的度数为

3)如图3,

由题意得矩形.设,则

中,∵

解得.即

答:平移的距离是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,DAC上一点,过BCD三点的OAB于点E,连接EDEC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE

1)求证:DFO的切线.

2)若DAC的中点,∠A30°,BC4,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6BC=8,点E是对角线BD上的一点,把△ABE沿着直线AE翻折得到△AFE,且点F恰好落在AD边上,连接BF

1)求△DEF的周长;

2)求sinBFE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的曲边三角形可按下述方法作出:作等边三角形;分别以点为圆心,以的长为半径作.三段弧所围成的图形就是一个曲边三角形,如果一个曲边三角形的周长为,那么这个曲边三角形的面积是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(

A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形

B.当E,F,G,H是各边中点,且ACBD时,四边形EFGH为矩形

C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形

D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.

根据统计图解答下列问题:

1)本次测试的学生中,得4分的学生有多少人?

2)本次测试的平均分是多少分?

3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, ,的顶点在射线,,在射线AN上,当是锐角三角形时,的长是整数,的长为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,BDCE,连接ADBE交于点F

1)求∠AFE的度数;

2)求证:ACDFBDBF

3)连接FC,若CFAD时,求证:BDDC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC 为等腰直角三角形,∠ACB90°,点 M AB 边的中点,点 N 为射线 AC 上一点,连接 BN,过点 C CDBN 于点 D,连接 MD,作∠BNE=∠BNA,边 EN 交射线 MD 于点 E,若 AB20MD14,则 NE 的长为___.

查看答案和解析>>

同步练习册答案