已知a﹣b=3,ab=2,求:
(1)(a+b)2
(2)a2﹣6ab+b2的值.
科目:初中数学 来源: 题型:
为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量.缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
先阅读再解题.
题目:如果(x﹣1)5=a1x5+a2x4+a3x3+a4x2+a5x+a6,求a6的值.
解这类题目时,可根据等式的性质,取x的特殊值,如x=0,1,﹣1…代入等式两边即可求得有关代数式的值.如:当x=0时,(0﹣1)5=a6,即a6=1.
请你求出下列代数式的值.
(1)a1+a2+a3+a4+a5
(2)a1﹣a2+a3﹣a4+a5.
查看答案和解析>>
科目:初中数学 来源: 题型:
.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:
小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2.
小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.
这时老师对同学们说,请大家完成以下问题:
(1)如图2,点P在∠ABC的内部,
①PA=4,PC=,PB= .
②用等式表示PA、PB、PC之间的数量关系,并证明.
(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com