精英家教网 > 初中数学 > 题目详情

【题目】如图(1)所示:等边ABC中,线段AD为其内角角平分线,过D点的直线B1C1ACC1AB的延长线于B1

(1)请你探究:是否都成立?

(2)请你继续探究:若ABC为任意三角形,线段AD为其内角角平分线,请问一定成立吗?并证明你的判断.

(3)如图(2)所示RtABC中,∠ACB=90,AC=8,AB= ,DEACAB于点E,试求的值.

【答案】(1)成立(2)成立(3)

【解析】分析: (1)根据等边三角形的性质得到AD垂直平分BC,∠CAD=∠BAD=30°,AB=AC,则DB=CD,易得;由于∠C1AB1=60°,得∠B1=30°,则AB1=2AC1,同理可得到DB1=2DC1,易得

(2)过B点作BE∥ACAD的延长线于E点,根据平行线的性质和角平分线的定义得到∠E=∠CAD=∠BAD,则BE=AB,并且根据相似三角形的判定得△EBD∽△ACD,得到,而BE=AB,于是有,这实际是三角形的角平分线定理;

(3)AD为△ABC的内角角平分线,由(2)的结论,根据相似三角形的判定得△DEF∽△ACF,利用相似三角形的性质解答即可.

详解:

(1)等边ABC中,线段AD为其内角角平分线,所以=1,

因为B1C1ACC1AB的延长线于B1,所以∠CAB=60°,B1=CAD=BAD=30°,所以AD=B1D,所以.这两个等式都成立;

(2)可以判断结论仍然成立,证明如下:

如图所示,ABC为任意三角形,过B点作BEACAD的延长线于E点,

∵∠E=CAD=BAD,BE=AB,又∵△EBD∽△ACD

又∵BE=AB.

即对任意三角形结论仍然成立;

﹙3﹚如图(2)所示,因为RtABC中,∠ACB=90°,AC=8,BC=,所以AB=

ADABC的内角角平分线,

DEAC,

∴△DEF∽△ACF,

.

点睛: 本题考查了相似三角形的判定与性质:平行于三角形一边的直线被其它两边所截,所截得的三角形与原三角形相似;相似三角形对应边的比相等.也考查了等边三角形的性质、含30°的直角三角形三边的关系以及角平分线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们约定:对角线相等的四边形称之为:等线四边形

1)①在平行四边形、菱形、矩形、正方形中一定是等线四边形的是___________________

②如图1,若四边形等线四边形 分别是边的中点,依次连接,得到四边形,请判断四边形的形状:______________________

2)如图2,在平面直角坐标系中,已知,以为直径作圆,该圆与轴的正半轴交于点,若为坐标系中一动点,且四边形等线四边形。当的长度最短时,求经过三点的抛物线的解析式;

3)如图3,在平面直角坐标系中,四边形等线四边形 轴的负半轴上,轴的负半轴上,且。点分别是一次函数轴,轴的交点,动点从点开始沿轴的正方向运动,运动的速度为2个单位长度/秒,设运动的时间为秒,以点为圆心,半径,单位长度作圆,问:①当与直线初次相切时,求此时运动的时间;②当运动的时间满足时,与直线相交于,求弦长的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:

频数

频率

第一组(0x15)

3

0.15

第二组(15x30)

6

a

第三组(30x45)

7

0.35

第四组(45x60)

b

0.20

(1)频数分布表中a=_____,b=_____,并将统计图补充完整;

(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成3030次以上的女学生有多少人?

(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.

(1)求抛物线顶点Q的坐标(用含a的代数式表示);

(2)说明直线与抛物线有两个交点;

(3)直线与抛物线的另一个交点记为N.

①若-1≤a≤一,求线段MN长度的取值范围;

②求△QMN面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=30°,将△ABC绕点C逆时针旋转得到△DEC,点A的对应点D恰好落在线段CB的延长线上,连接AD,若∠ADE=90°,则∠BAD=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC,BD相交于点O,OAC的中点,AD//BC,AC=8,BD=6.

(1)求证:四边形ABCD是平行四边形;

(2)若ACBD,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织七、八年级全体同学参观八路军太行纪念馆(位于山西省长治市武乡县城).七年级租用45座大巴车辆,55座大巴车辆;八年级租用30座中巴车辆,55座大巴车.当每辆车恰好坐满时:

1)用含有的代数式分别表示七、八年级各有学生数.

2)用含有的代数式表示七、八年级共有多少学生?

3)当时,该学校七、八年级共有多少学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,以AO为直径作半圆M,C为OB的中点,D在半圆M上,且CD⊥MD,延长AD交半圆O于点E,且AB=4,则圆中阴影部分的面积为_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点ABC是数轴上的三个点,其中AB12,且AB两点表示的数互为相反数.

1)请在数轴上标出原点O,并写出点A表示的数;

2)如果点Q以每秒2个单位的速度从点B出发向左运动,那么经过 秒时,点C恰好是BQ的中点;

3)如果点P以每秒1个单位的速度从点A出发向右运动,那么经过多少秒时PC2PB.

查看答案和解析>>

同步练习册答案