精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC中,∠C=90°,BC=3,AC=4,D为AC上一点,以CD为直径的⊙O切AB于点E.求⊙O的半径长.
分析:根据切线的性质,即可推出BE的长度,再根据勾股定理推出AB的长度,即可推出AE的长度,然后根据∠A的正切,推出
OE
AE
=
BC
AC
,即可推出OE的长度.
解答:精英家教网解:连接OE,
∵∠C=90°,CD是⊙O的直径,
∴BC是⊙O的切线,
∵BE是⊙O的切线,
∴BE=BC=3,
在Rt△ABC中,
AB=
BC2+AC2
=
32+42
=5

∴AE=AB-BE=5-3=2,
∵AB是⊙O切线,切点为E,
∴∠AEO=90°,
∴tanA=
OE
AE

∵在△ABC中,tanA=
BC
AC

OE
AE
=
BC
AC

OE=
BC
AC
×AE=
3
4
×2=
3
2
,即为⊙O的半径长.
点评:本题主要考查切线的性质、勾股定理、解直角三角形,关键在于首先求出AE的长度,根据∠A的正切即可推出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案