精英家教网 > 初中数学 > 题目详情

【题目】如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是(  )

A.15°
B.30°
C.60°
D.75°

【答案】D
【解析】解:连接OD,
∵CA,CD是⊙O的切线,
∴OA⊥AC,OD⊥CD,
∴∠OAC=∠ODC=90°,
∵∠ACD=30°,
∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,
∵OB=OD,
∴∠DBA=∠ODB= ∠AOD=75°.
故选D.

首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD的度数,又由OB=OD,即可求得答案.此题考查了切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.

(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα= ,以O为原点,OA所在直线为x轴建立直角坐标系.

(1)求点P的坐标;
(2)水面上升1m,水面宽多少( 取1.41,结果精确到0.1m)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y= 的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.

(1)求反比例函数和直线的解析式;
(2)求△AOB的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:a2+b2=5c2
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故 ,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证

(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标中,△ABC三个顶点坐标为A(﹣ ,0)、B( ,0)、C(0,3).

(1)求△ABC内切圆⊙D的半径.
(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.
(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2 为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项.以下是同学们整理的不完整的统计图:
根据以上信息完成下列问题:
(1)请将条形统计图补充完整;
(2)随机调查的游客有人;在扇形统计图中,A部分所占的圆心角是度;
(3)请根据调查结果估计在1500名游客中喜爱攀锦的约有人.

查看答案和解析>>

同步练习册答案