精英家教网 > 初中数学 > 题目详情

【题目】如图,已知反比例函数y= 的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.

(1)求反比例函数和直线的解析式;
(2)求△AOB的面积

【答案】
(1)

解:把A(1,4)代入y= 得k=1×4=4,

所以反比例函数的解析式为y=

把A(1,4)代入y=﹣x+b得﹣1+b=4,解得b=5,

所以直线解析式为y=﹣x+5;


(2)

解:当y=0时,﹣x+5=0,解得x=5,则B(5,0),

所以△AOB的面积= ×5×4=10


【解析】(1)把A点坐标分别代入y= 和y=﹣x+b中分别求出k和b即可得到两函数解析式;(2)利用一次函数解析式求出B点坐标,然后根据三角形面积公式求解.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(﹣4,0),直线y= x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.

图形的变化

示例图形

与对应线段有关的结论

与对应点有关的结论

平移

AA′=BB′
AA′∥BB′

轴对称

旋转

AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.

(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;
(2)求y1、y2与x的函数表达式;
(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动﹣旋转变换

(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
①猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
②连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是(  )

A.15°
B.30°
C.60°
D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,且∠P=∠E,∠POE=2∠CAB.

(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,PB=9,求⊙O的半径及tan∠P的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1 , 然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2
(1)在网格中画出△A1B1C1和△A1B2C2
(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算)

查看答案和解析>>

同步练习册答案