精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是(
A.
B.
C.
D.

【答案】B
【解析】解:∵矩形ABCD的边AB=1,BE平分∠ABC, ∴∠ABE=∠EBF=45°,AD∥BC,
∴∠AEB=∠CBE=45°,
∴AB=AE=1,BE=
∵点E是AD的中点,
∴AE=ED=1,
∴图中阴影部分的面积=S矩形ABCD﹣SABE﹣S扇形EBF
=1×2﹣ ×1×1﹣
=
故选:B.
【考点精析】通过灵活运用矩形的性质和扇形面积计算公式,掌握矩形的四个角都是直角,矩形的对角线相等;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC=BCDC=EC,∠ACB=ECD=90°,且∠EBD=38°,则∠AEB=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,m)在边AB上,反比例函数y= (k≠0)在第一象限内的图象经过点D、E,且cos∠BOA=

(1)求边AB的长;
(2)求反比例函数的解析式和m的值;
(3)若反比例函数的图象与矩形的边BC交于点F,点G、H分别是y轴、x轴上的点,当△OGH≌△FGH时,求线段OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张庄甲、乙两家草莓采摘园的草莓销售价格相同,春节期间,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为千克),在甲园所需总费用为),在乙园所需总费用为),之间的函数关系如图所示,折线OAB表示之间的函数关系.

(1)甲采摘园的门票是 元,两个采摘园优惠前的草莓单价是每千克 元;

(2)当>10时,求的函数表达式;

(3)游客在春节期间采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,因为直线ABCD相交于点PABEF,所以CD不平行于EF(________________________________________________________)

(2)因为直线abbc,所以ac(________________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的分式方程 + =4的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为(
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边ABC

(1)如图1,PQBC边上两点AP=AQ,∠BAP=20°,AQB的度数

(2)PQBC边上的两个动点不与点BC重合),P在点Q的左侧AP=AQQ关于直线AC的对称点为M连接AMPM.

依题意将图2补全;小明通过观察、实验提出猜想:在点PQ运动的过程中始终有PA=PM小明把这个猜想与同学们进行交流通过讨论形成了证明该猜想的几种想法:

想法1:要证PA=PM只需证APM是等边三角形.

想法2:在BA上取一点N使得BN=BP要证PA=PM只需证ANP≌△PCM.……

请你参考上面的想法帮助小明证明PA=PM一种方法即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班数学兴趣小组对不等式组,讨论得到以下结论:①若a5,则不等式组的解集为3<x≤5;②若a2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是____

查看答案和解析>>

同步练习册答案