精英家教网 > 初中数学 > 题目详情

【题目】如图,AC=BCDC=EC,∠ACB=ECD=90°,且∠EBD=38°,则∠AEB=________.

【答案】128°

【解析】

先证明BDC≌△AEC,进而得到角的关系,再由∠EBD的度数进行转化,最后利用三角形的内角和即可得到答案.

解:
∵∠ACB=∠ECD=90°
∴∠BCD=∠ACE
BDCAEC中,
ACBC,∠BCD=∠ACEDCEC
∴△BDC≌△AECSAS),
∴∠DBC=∠EAC
∵∠EBD=∠DBC+∠EBC=38°
∴∠EAC+∠EBC=38°
∴∠ABE+∠EAB=90°-38°=52°
∴∠AEB=180°-(∠ABE+∠EAB)=180°-52°=128°
故答案为:128°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是(  )

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义: 如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1 , A2B2C2D2 , AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.

(1)已知A(﹣2,3),B(5,0),C(t,﹣2). ①当t=2时,点A,B,C的最优覆盖矩形的面积为
②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;

(2)已知点D(1,1).E(m,n)是函数y= (x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,A(﹣2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC

(1)求C点的坐标;

(2)在坐标平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由;

(3)如图2,点Ey轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过MMNx轴于N,求OEMN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且ab满足

B两点对应的数分别为____________

若将数轴折叠,使得A点与B点重合,则原点O与数______表示的点重合;

若点AB分别以4个单位秒和3个单位秒的速度相向而行,则几秒后AB两点相距1个单位长度?

若点AB中的速度同时向右运动,点P从原点O7个单位秒的速度向右运动,是否存在常数m,使得为定值,若存在,请求出m值以及这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AEAB,AFAC,AE=AB,AF=AC.求证:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.

(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.

(1)①画出△ABC关于y轴对称的△A1B1C1
②画出△ABC绕点O按顺时针方向旋转90°后的△A2B2C2
(2)判断△A1B1C1和△A2B2C2是不是成轴对称?如果是,请在图中作出它们的对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案