精英家教网 > 初中数学 > 题目详情
如图,已知A,B两点的坐标分别为(-3,0),(0,3),⊙C的圆心坐标为(3,0),并与x轴交于坐标原点O.若E是⊙C上的一个动点,线段AE与y轴交于点D.
(1)线段AE长度的最小值是
 
,最大值是
 

(2)当点E运动到点E1和点E2时,线段AE所在的直线与⊙C相切,求由AE1、AE2、弧E1OE2所围成的图形的面积;
(3)求出△ABD的最大值和最小值.
考点:圆的综合题
专题:几何综合题
分析:(1)根据动点E在x轴上时,AE取得最小值与最大值解答;
(2)连接CE1、CE2,根据圆的切线的定义可得CE1⊥AE1,CE2⊥AE2,解直角三角形求出∠ACE1=60°,过点E1作E1F⊥x轴于F,利用∠ACE1的正弦求出E1F,然后利用三角形的面积求出△ACE1的面积,同理可得△ACE2的面积,再根据由AE1、AE2、弧E1OE2所围成的图形的面积=四边形AE1CE2的面积-扇形CE1E2的面积,然后列式计算即可得解;
(3)根据直角三角形两锐角互余求出∠DAO=30°,利用∠DAO的正切值求出OD的长度,根据三角形的面积,点D在y轴负半轴时,△ABD的面积取得最大值,在y轴正半轴时,△ABD的面积取得最小值,然后进行计算即可得解,
解答:解:(1)∵A(-3,0),
∴OA=3,
∵⊙C的圆心坐标为(3,0),并与x轴交于坐标原点O,
∴⊙C的半径为3,
∴AE长度的最小值为3,最大值为3+3×2=9;
故答案为:3,9;

(2)如图,连接CE1、CE2
∵点E运动到点E1和点E2时,线段AE所在的直线与⊙C相切,
∴CE1⊥AE1,CE2⊥AE2
∵cos∠ACE1=
CE1
AC
=
3
3+3
=
1
2

∴∠ACE1=60°,
过点E1作E1F⊥x轴于F,则E1F=CE1•sin60°=3×sin60°=3×
3
2
=
3
3
2

∴△ACE1的面积=
1
2
AC•E1F=
1
2
×6×
3
3
2
=
9
3
2

同理可得,△ACE2的面积=
9
3
2

∴四边形AE1CE2的面积=△ACE1的面积+△ACE2的面积=
9
3
2
+
9
3
2
=9
3

由AE1、AE2、弧E1OE2所围成的图形的面积=四边形AE1CE2的面积-扇形CE1E2的面积,
=9
3
-
(60+60)•π•32
360

=9
3
-3π;

(3)∵∠ACE1=60°,
∴∠DAO=90°-ACE1=90°-60°=30°,
∴OD=AO•tan∠DAO=3tan30°=3×
3
3
=
3

∵点A到BD的距离为OA的长度,不变,
∴点D在y轴负半轴时,△ABD的面积取得最大值,
此时BD=OB+OD=3+
3

最大面积为:
1
2
×(3+
3
)×3=
9+3
3
2

在y轴正半轴时,△ABD的面积取得最小值,
时BD=OB-OD=3-
3

最小面积为:
1
2
×(3-
3
)×3=
9-3
3
2
点评:本题是圆的综合题型,主要考查了圆外一点与圆上各点的距离的最值问题,圆的切线问题,解直角三角形,以及三角形的面积,综合题,但难度不大,(1)(3)确定出最大值与最小值时的点E的位置是解题的关键,(2)根据对称性求出四边形的面积,并表示出围成图形的表示是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平行四边形ABCD中,E、F分别是BC、AD边上的点,四边形AECF是⊙O的内接四边形,且AC是⊙O的直径.
(1)求证:BE=DF;
(2)若BA与⊙O相切,BC=10cm,BE:CE=3:2,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列各组三条线段,能组成三角形的是(  )
A、1,4,5
B、2,2,5
C、3,4,5
D、2
2
2
,5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD与矩形EDCF相似,且CD=1.求:BC•CF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

任意两个菱形都相似.
 
.(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,∠BCA=90°,BC=6cm,AC=8cm,AB=10cm,CD⊥AB,垂足为D,
(1)求△ABC的面积和CD的长;
(2)若点P从A点出发,以每秒1cm的速度沿边AB-BC运动,点P运动到C点停止运动.设运动时间为t秒,问t为何值时,△PAC的面积为6cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

4
3
-8x=3-
11
2
x

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,E为?ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为(  )
A、65°B、100°
C、115°D、135°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,BC=5,M和I分别为△ABC的重心与内心,若MI∥BC,则AB+AC=
 

查看答案和解析>>

同步练习册答案