【题目】某检修小组从地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
求收工时,检修小组在地的哪个方向?距离地多远?
在第几次纪录时距地最远?
若汽车行驶每千米耗油升,问从地出发,检修结束后再回到地共耗油多少升?
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.
(1)求m的值;
(2)求抛物线E2所表示的二次函数的表达式;
(3)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)判断OE与OF的大小关系?并说明理由?
(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;
(3)当点O运动到何处时,四边形AECF是矩形?并说出你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习了数轴后,小亮决定对数轴进行变化应用:
(1)应用一:已知点A在数轴上表示为,数轴上任意一点B表示的数为,则AB两点的距离可以表示为 ;应用这个知识,请写出当 时,有最小值为 .
(2)应用二:从数轴上取下一个单位长度的线段,第一次剪掉原长的,第二次剪掉剩下的,依次类推,每次都剪掉剩下的,则剪掉5次后剩下线段长度为 ;应用这个原理,请计算:.
(3)应用三:如图,将一根拉直的细线看作数轴,一个三边长分别为的三角形的顶点与原点重合,边在数轴正半轴上,将数轴正半轴的线沿的顺序依次缠绕在三角形的边上,负半轴的线沿的顺序依次缠绕在三角形的边上.
①如果正半轴的线缠绕了5圈,负半轴的线缠绕了3圈,求绕在点上的所有数之和;
②如果正半轴的线不变,将负半轴的线拉长一倍,即原线上的点的位置对应着拉长后的数,并将三角形向正半轴平移一个单位后再开始绕,求绕在点且绝对值不超过100的所有数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.
(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近两年,国际市场黄金价格涨幅较大,中国交通银行推出“沃德金”的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为285元/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六.星期日休市)
星期 | 一 | 二 | 三 | 四 | 五 |
收盘价的变化(与前一天收盘价比较) | +7 | +5 | +8 |
问:(1)本周星期三黄金的收盘价是多少?
(2)本周黄金收盘时的最高价.最低价分别是多少?
(3)上周,小王以周五的收盘价285元/克买入黄金1000克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金1000克,他的收益情况如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB= , PD= .
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com