【题目】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB= , PD= .
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
【答案】
(1)8﹣2t; t
(2)解:不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
∴ ,即 ,
∴AD= t,
∴BD=AB﹣AD=10﹣ t,
∵BQ∥DP,
∴当BQ=DP时,四边形PDBQ是平行四边形,
即8﹣2t= ,解得:t= .
当t= 时,PD= = ,BD=10﹣ × =6,
∴DP≠BD,
∴PDBQ不能为菱形.
设点Q的速度为每秒v个单位长度,
则BQ=8﹣vt,PD= t,BD=10﹣ t,
要使四边形PDBQ为菱形,则PD=BD=BQ,
当PD=BD时,即 t=10﹣ t,解得:t=
当PD=BQ,t= 时,即 =8﹣ ,解得:v=
当点Q的速度为每秒 个单位长度时,经过 秒,四边形PDBQ是菱形
(3)解:如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.
依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).
设直线M1M2的解析式为y=kx+b,
∴ ,
解得 ,
∴直线M1M2的解析式为y=﹣2x+6.
∵点Q(0,2t),P(6﹣t,0)
∴在运动过程中,线段PQ中点M3的坐标( ,t).
把x= 代入y=﹣2x+6得y=﹣2× +6=t,
∴点M3在直线M1M2上.
过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.
∴M1M2=2
∴线段PQ中点M所经过的路径长为2 单位长度
【解析】解:(1)根据题意得:CQ=2t,PA=t, ∴QB=8﹣2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA= = ,
∴PD= t.
故答案为:(1)8﹣2t, t.
(1)根据题意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA= = ,则可求得QB与PD的值;(2)易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形,即可求得此时DP与BD的长,由DP≠BD,可判定PDBQ不能为菱形;然后设点Q的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD=BQ,列方程即可求得答案;(3)设E是AC的中点,连接ME.当t=4时,点Q与点B重合,运动停止.设此时PQ的中点为F,连接EF,由△PMN∽△PQC.利用相似三角形的对应边成比例,即可求得答案.
科目:初中数学 来源: 题型:
【题目】某检修小组从地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
求收工时,检修小组在地的哪个方向?距离地多远?
在第几次纪录时距地最远?
若汽车行驶每千米耗油升,问从地出发,检修结束后再回到地共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1) (2-3)÷; (2) (-)2+2×;
(3) ; (4) (-2)×-4;
(5)(-1)(+1)-(-)-2+|1-|-(π-2)0+;
(6).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a,b,m,n均为整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法解决下列问题:
(1)当a,b,m,n均为正整数时,若a+b=(m+n)2,用含m,n的式子分别表示a,b,得a=______________,b=________;
(2)利用所探索的结论,找一组正整数a,b,m,n填空:
________+________=(________+________)2;
(3)若a+4=(m+n)2,且a,m,n均为正整数,求a的值.
(4)试化简.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 “囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
(1)用含有x、y的代数式表示右图中“囧”的面积;
(2)当时,求此时“囧”的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.
(1)小明考了68分,那么小明答对了多少问题?
(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)3ab2(﹣a2b)2abc;
(2)(﹣x2y)3(﹣3xy2);
(3)(﹣3xy2)3(x3y);
(4)(x2+3x)﹣2(4x﹣x2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com