精英家教网 > 初中数学 > 题目详情

【题目】如图1,反比例函数y= (x>0)的图象经过点A(2 ,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
(1)求k的值;
(2)求tan∠DAC的值及直线AC的解析式;
(3)如图2,
M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.

【答案】
(1)解:把A(2 ,1)代入y=

得k=2 ×1=2


(2)解:作BH⊥AD于H,如图1,

把B(1,a)代入反比例函数解析式y=

得a=2

∴B点坐标为(1,2 ),

∴AH=2 ﹣1,BH=2 ﹣1,

∴△ABH为等腰直角三角形,

∴∠BAH=45°,

∵∠BAC=75°,

∴∠DAC=∠BAC﹣∠BAH=30°,

∴tan∠DAC=tan30°=

∵AD⊥y轴,

∴OD=1,AD=2

∵tan∠DAC= =

∴CD=2,

∴OC=1,

∴C点坐标为(0,﹣1),

设直线AC的解析式为y=kx+b,

把A(2 ,1)、C(0,﹣1)代入

∴直线AC的解析式为y= x﹣1


(3)解:设M点坐标为(t, )(0<t<2 ),

∵直线l⊥x轴,与AC相交于点N,

∴N点的横坐标为t,

∴N点坐标为(t, t﹣1),

∴MN= ﹣( t﹣1)= t+1,

∴SCMN= t( t+1)

=﹣ t2+ t+

=﹣ (t﹣ 2+ (0<t<2 ),

∵a=﹣ <0,

∴当t= 时,S有最大值,最大值为


【解析】(1)根据反比例函数图象上点的坐标特征易得k=2 ;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2 ),则AH=2 ﹣1,BH=2 ﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC= ;由于AD⊥y轴,则OD=1,AD=2 ,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y= x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t, )(0<t<2 ),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t﹣1),则MN= t+1,根据三角形面积公式得到SCMN= t( t+1),再进行配方得到S=﹣ (t﹣ 2+ (0<t<2 ),最后根据二次函数的最值问题求解.
【考点精析】通过灵活运用一次函数的性质和二次函数的最值,掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,其对称轴方程为x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,则正确的结论是(
A.①②③④
B.②④⑤
C.①④⑤
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.
(1)求证:△ABD∽△CBA;
(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是⊙O外一点,PA和PB分别切⊙O于A、B两点,已知⊙O的半径为6cm,∠PAB=60°,若用图中阴影部分以扇形围成一个圆锥的侧面,则这个圆锥的高为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣6,0),B(﹣1,1),C(﹣3,3),将△ABC绕点B顺时针方向旋转90°后得到△A1BC1
(1)画出△A1BC1 , 写出点A1、C1的坐标;
(2)计算线段BA扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数y= 的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)点P是x轴上的一动点,试确定点P使PA+PB最小,并求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是(  )

A.②③
B.③④
C.①②④
D.②③④

查看答案和解析>>

同步练习册答案