【题目】如图,边长均为的正和正原来完全重合.如图,现保持正不动,使正绕两个正三角形的公共中心点按顺时针方向旋转,设旋转角度为.(注:除第题中的第②问,其余各问只要直接给出结果即可)
当多少时,正与正出现旋转过程中的第一次完全重合?
当时,要使正与正重叠部分面积最小,可以取哪些角度?
旋转时,如图,正和正始终具有公共的外接圆.当时,记正与正重叠部分为六边形.当在这个范围内变化时,
①求面积相应的变化范围;
②的周长是否一定?说出你的理由.
【答案】;当、或时重叠部分面积最小;①;②的周长一定;理由见解析.
【解析】
(1)因为当B′与A重合时正△A'B'C'与正△ABC出现旋转过程中的第一次完全重合,故α=120°;
(2)当△A′B′C′中任意一条边与△ABC平行时重叠部分面积最小,由(1)可知当B′与A重合时正△A'B'C'与正△ABC出现旋转过程中的第一次完全重合时α=60°,所以当α=60°、180°或300°时重叠部分面积最小;
(3)①由于两三角形的边长均为6,所以当A′B′∥BC时,△ADI为等边三角形,所以ID=2,所以S△ADI=IDAIsin60°=×2×2×=,进而可得出结论;
②连接AB′,根据AB=A'B',可得出,再根据圆周角定理即可得出IA=IB',DA=DA',进而可得出结论.
∵当与重合时正与正出现旋转过程中的第一次完全重合,此时点与重合,旋转角度,
∴当时,正与正
出现旋转过程中的第一次完全重合;
当中任意一条边与平行时重叠部分面积最小,
∵由可知当与重合时正与正出现旋转过程中的第一次完全重合时,
∴当、或时重叠部分面积最小;
①∵两三角形的边长均为,
∴当时,为等边三角形,
∴,
∴,
∴面积相应的变化范围为:
②的周长一定;理由如下:
连接,
∵,
∴,
∴,
∴,
∴,
同理,,
∴的周长:.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC。
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BCD的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,且AB为⊙O的直径OD⊥AB,与AC交于点E,与过点C的⊙O切线交于点D.
(1)若AC=6,BC=3,求OE的长.
(2)试判断∠A与∠CDE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,中,,,.若有一半径为的圆分别与、相切,则下列何种方法可找到此圆的圆心( )
A. 的角平分线与的交点
B. 的中垂线与中垂线的交点
C. 的角平分线与中垂线的交点
D. 的角平分线与中垂线的交点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式;
(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?
(销售利润=销售价-成本价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,若∠A=40°,则∠BOC的度数为( )
A.40°B.80°C.100°D.110°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点、分别在边、上,如果,且,那么下列说法中,错误的是( )
A. △ADE∽△ABC B. △ADE∽△ACD
C. △ADE∽△DCB D. △DEC∽△CDB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com