【题目】如图所示,已知:点A(0,0),B( ,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1 , 第2个△B1A2B2 , 第3个△B2A3B3 , …,则第n个等边三角形的边长等于 .
【答案】
【解析】解:∵OB= ,OC=1,
∴BC=2,
∴∠OBC=30°,∠OCB=60°.
而△AA1B1为等边三角形,∠A1AB1=60°,
∴∠COA1=30°,则∠CA1O=90°.
在Rt△CAA1中,AA1= OC= ,
同理得:B1A2= A1B1= ,
依此类推,第n个等边三角形的边长等于 .
【考点精析】根据题目的已知条件,利用等边三角形的性质和解直角三角形的相关知识可以得到问题的答案,需要掌握等边三角形的三个角都相等并且每个角都是60°;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法).
科目:初中数学 来源: 题型:
【题目】已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥ED,CD=BF,若要说明△ABC ≌△EDF,则不能补充的条件是( )
A.AC=EFB.AB=EDC.∠A=∠ED.AC∥EF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是( )
A.5
B.4.8
C.4.6
D.4.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,CD⊥AB于D,在(1)DCAB=ACBC;(2);(3);(4)AC+BC>CD+AB中正确的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数(k<0)的图像经过点A(,m),过点A作AB⊥x轴于点,且△AOB的面积为.
(1)求k和m的值;
(2)若一次函数y=ax+1的图像经过点A,并且与x轴相交于点C,求∠ACO的度数及的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在一次数学兴趣小组活动中,进行了如下探索活动.
问题原型:如图(1),在矩形ABCD中,AB=6,AD=8,P、Q分别是AB、AD边的中点,以AP、AQ为邻边作矩形APEQ,连接CE,则CE的长为 (直接填空)
问题变式:(1)如图(2),小明让矩形APEQ绕着点A逆时针旋转至点E恰好落在AD上,连接CE、DQ,请帮助小明求出CE和DQ的长,并求DQ:CE的值.
(2)如图(3),当矩形APEQ绕着点A逆时针旋转至如图(3)位置时,请帮助小明判断DQ:CE的值是否发生变化?若不变,说明理由.若改变,求出新的比值.
问题拓展:若将“问题原型”中的矩形ABCD改变为平行四边形ABCD,且AB=3,AD=7,∠B=45°,P、Q分别是AB、AD边上的点,且AP=AB,AQ=AD,以AP、AQ为邻边作平行四边形APEQ.当平行四边形APEQ绕着点A逆时针旋转至如图(4)位置时,连接CE、DQ.请帮助小明求出DQ:CE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平行四边形中,点是对角线的中点,过点与,分别相交于,,过点与,分别相交于点,,连接,,,.
(1)求证:四边形是平行四边形;
(2)如图2,若,,在不添加任何辅助的情况下,请直接写出图2中与四边形面积相等的所有的平行四边形(四边形除外).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com