精英家教网 > 初中数学 > 题目详情

函数y=数学公式,若-4≤x<-2,则


  1. A.
    2≤y<4
  2. B.
    -4≤y<-2
  3. C.
    -2≤y<4
  4. D.
    -4<y≤-2
D
分析:当-4≤x<-2<0,在函数y=的单调递减区间,所以将定义域俩端的数值代入函数关系式即可得出对应自变量的函数值.即得出函数的取值范围.
解答:根据题意,当x=-4时,y=-2;
当x=-2时,y=-4;
故函数值的取值范围为-4<y≤-2;
故选D.
点评:本题考查了结合反比例函数的性质由自变量的取值范围来确定函数值的取值范围,同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线y=
3
x+3
分别交x轴、y轴于B、A两点,抛物线L:y=ax2+bx+c的顶点G在x轴上,且过(0,4)和(4,4)两点.
(1)求抛物线L的解析式;
(2)抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由;
(3)将抛物线L沿x轴平行移动得抛物线L1,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L1上.试问这样的抛物线L1是否存在,若存在,求出L1对应的函数关系式,若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A,B两点,与y轴相交于点C,连接BC,已知△BOC是等腰三角形.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)求四边形ACDB的面积;
(3)若点E(x,y)是y轴右侧的抛物线上不同于点B的任意一点,设以A,B,C,E为顶点的四边形的面积为S.
①求S与x之间的函数关系式.
②若以A,B,C,E为顶点的四边形与四边形ACDB的面积相等,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平面直角坐标系xOy中,点A(2,m),B(-3,n)为两动点,其中m>1,连接O精英家教网A,OB,OA⊥OB,作BC⊥x轴于C点,AD⊥x轴于D点.
(1)求证:mn=6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:2?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形OABC中,OA∥BC,A、B两点的坐标分别为A(13,0),B(11,12).动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿x轴向终点A运动,点Q以每秒1个单位的速度沿BC方向运动;当点P停止运动时,点Q也同时停止运动.线段PQ和OB相交于点D,过点D作DE∥x轴,交AB于点E,射线QE交x轴于点F.设动点P、Q运动时间精英家教网为t(单位:秒).
(1)当t为何值时,四边形PABQ是平行四边形.
(2)△PQF的面积是否发生变化?若变化,请求出△PQF的面积s关于时间t的函数关系式;若不变,请求出△PQF的面积.
(3)随着P、Q两点的运动,△PQF的形状也随之发生了变化,试问何时会出现等腰△PQF?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一次函数y=精英家教网图象过点A(0,3)B(2,4).题目中的矩形部分是一段因墨水污染而无法辨认的文字.
(1)根据现有的信息,你能否求出题中的一次函数的解析式?若能,写出求解过程,若不能说明理由;
(2)根据关系式画出函数图象;
(3)小明说“本题不用求函数关系式也能画出函数图象”,你认为对吗?为什么?
(4)过点B能不能画出一直线BC将ABO(O为坐标原点)分成面积比为1:2的两部分?如能,可以画出几条,并写出这样的直线所对应的函数关系式;若不能,说明理由.

查看答案和解析>>

同步练习册答案