【题目】如图,∠DAB=∠CAE,AD=AB,AC=AE.
(1)求证△ABE≌△ADC;
(2)设BE与CD交于点O,∠DAB=30°,求∠BOC的度数.
【答案】(1)见解析;(2)150°.
【解析】
(1)先利用角的和差证出∠DAC=∠BAE,再利用SAS证△ABE≌△ADC即可;
(2)设AB与OD交于点F,根据(1)中全等可得:∠ABE=∠D,根据三角形的内角和定理可证∠BOF=∠DAB=30°,从而求出∠BOC的度数.
解:(1)∵∠DAB=∠CAE
∴∠DAB+∠BAC=∠CAE+∠BAC
∴∠DAC=∠BAE
在△ABE和△ADC中
∴△ABE≌△ADC;
(2)设AB与OD交于点F
∵△ABE≌△ADC
∴∠ABE=∠D
∵∠BFO=∠DFA
∴∠BOF=180°-∠ABE-∠BFO=180°-∠D-∠DFA=∠DAB=30°
∴∠BOC=180°-∠BOF=150°
科目:初中数学 来源: 题型:
【题目】 P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某省为推广新能源汽车,计划连续五年给予财政补贴.补贴开始时间为年度,截止时间为年度.补贴期间后一年度的补贴额均在前一年度补贴额基础上递增.计划前三年,每年度按固定额度亿元递增;后两年均在上一年的基础上按相同增长率递增.已知年度计划补贴额为亿元.
若年度计划补贴额比年度至少增加,求的取值范围;
若预计这五年补贴总额比年度补贴额的倍还多亿元,求后两年财政补贴的增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,则球的半径长是( )
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从甲地出发以每小时80 km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5 h后,在距乙地160 km处与轿车相遇.图中线段AB表示货车离乙地的距离y1 km与货车行驶时间x h的函数关系.
(1)求y1与x之间的函数表达式;
(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图像,求该图像与x轴交点坐标并解释其实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:
(1)(2x+y)2﹣y(2x+y),其中x=,y=﹣1;
(2)[(a﹣2b)2+(a﹣2b)(a+2b)﹣2a(2a﹣b)]÷2a,其中a=3,b=2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①∠1+∠2与∠B+∠C有什么关系?为什么?
(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2_______∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=______.
(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°- = ,猜想∠BDA+∠CEA与∠A的关系为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是边BC的中点,CE∥AB,AD平分∠EAB
(1)延长AD、CE相交于点F,求证:AB=CE+AE
(2)当点E和点C重合时,试判断△ABC的形状,请画出图形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com