【题目】如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.
【答案】3.
【解析】
根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.
解:如图,
∵四边形OABC是矩形,
∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,
∵CD=3DB,
∴CD=6,BD=2,
∴CD=AB,
∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,
∴A′D=AD,A′E=AE,
在Rt△A′CD与Rt△DBA中,
,
∴Rt△A′CD≌Rt△DBA(HL),
∴A′C=BD=2,
∴A′O=4,
∵A′O2+OE2=A′E2,
∴42+OE2=(8-OE)2,
∴OE=3,
故答案是:3.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=10,P是线段AB上的动点,分别以AP、PB为边在线段AB的同侧作等边△ACP和△PDB,连接CD,设CD的中点为G,当点P从点A运动到点B时,则点G移动路径的长是_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:
收费出口编号 | |||||
通过小客车数量(辆) | 260 | 330 | 300 | 360 | 240 |
在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段,,点从点开始绕着点以的速度顺时针旋转一周回到点后停止,点同时出发沿射线自点向点运动,若点、两点能恰好相遇,则点运动的速度为________;
将一副三角板中的两块直角三角尺的直角顶点按如图方式叠放在一起(其中,,,;).将三角尺固定,另一三角尺的边从边开始绕点转动,转动速度与问中点速度相同,当且点在直线的上方时,这两块三角尺是否存在一组边互相平行?若存在,请写出有可能的值及对应转动的时间;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)因式分解:(x2+4)2﹣16x2
(2)先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷(2x),其中x=﹣2,y=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数的图像为直线.
(1)若直线与正比例函数的图像平行,且过点(0,2),求直线的函数表达式;
(2)若直线过点(3,0),且与两坐标轴围成的三角形面积等于3,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,为直径,为弦.过延长线上一点,作于点,交于点,交于点,是的中点,连接,.
(1)判断与的位置关系,并说明理由;
(2)若,,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元.
(Ⅰ)求这两种品牌计算器的单价;
(Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.
(Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
(1)若∠G=48°,求∠ACB的度数;
(2)若AB=AE,求证:∠BAD=∠COF;
(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com