精英家教网 > 初中数学 > 题目详情
16.如图,反比例函数y=$\frac{k}{x}$(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥X轴于点B,交反比例函数图象于点D,且AB=3BD
(1)求K的值;
(2)求C点的坐标;
(3)在y轴上确定一点P,使点P到C、D两点距离之和d=PC+PD最小,求P点的坐标.

分析 (1)根据A坐标,以及AB=3BD求出D坐标,代入反比例解析式求出k的值;
(2)直线y=3x与反比例解析式联立方程组即可求出点C坐标;
(3)作C关于y轴的对称点C′,连接C′D交y轴于M,则d=MC+MD最小,得到C′(-$\frac{\sqrt{3}}{3}$,$\sqrt{3}$),求得直线C′D的解析式为y=-$\sqrt{3}$x+1+$\sqrt{3}$,直线与y轴的交点即为所求.

解答 解:(1)∵A(1,3),
∴AB=3,OB=1,
∵AB=3BD,
∴BD=1,
∴D(1,1)
将D坐标代入反比例解析式得:k=1;

(2)由(1)知,k=1,
∴反比例函数的解析式为;y=$\frac{1}{x}$,
则$\left\{\begin{array}{l}{y=3x}\\{y=\frac{1}{x}}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{3}}\\{y=\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{3}}\\{y=-\sqrt{3}}\end{array}\right.$,
∵x>0,
∴C($\frac{\sqrt{3}}{3}$,$\sqrt{3}$);

(3)如图,作C关于y轴的对称点C′,连接C′D交y轴于P,则d=PC+PD最小,
∴C′(-$\frac{\sqrt{3}}{3}$,$\sqrt{3}$),
设直线C′D的解析式为:y=kx+b,
∴$\left\{\begin{array}{l}{\sqrt{3}=-\frac{\sqrt{3}}{3}k+b}\\{1=k+b}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-3+2\sqrt{3}}\\{b=-2+2\sqrt{3}}\end{array}\right.$,
∴y=(-3+2$\sqrt{3}$)x+2$\sqrt{3}$-2,
当x=0时,y=2$\sqrt{3}$-2,
∴P(0,2$\sqrt{3}$-2).

点评 此题考查了反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,以及直线与反比例的交点求法,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.因式分解:x2-6xy+9y2+x2y-9y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解不等式,并将其解集在数轴上表示出来.
(1)4x+1<2x-3                   
(2)$\frac{y+1}{3}$-$\frac{3y-5}{2}$≥4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,△ABC中,CD是边AB上的高,且CD2=AD•BD,求∠ACB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.
(1)求证:CT为⊙O的切线;
(2)连接BT,若⊙O半径为1,AT=$\sqrt{3}$,求BT的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知关于x的方程x2-4mx+4m2-9=0.
(1)求证:此方程有两个不相等的实数根;
(2)设此方程的两个根分别为x1,x2,其中x1<x2,若3x1=2x2+1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)化简:4a2+2(3ab-2a2)-(7ab-1).
(2)已知:(x+2)2+|y-1|=0,求2(xy2+x2y)-[2xy2-3(1-x2y)]-2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.用适当的方法解下列方程:
(1)x2-4x-21=0
(2)(2x+1)(x-3)=(4x-1)(3-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知抛物线y=-x2+bx+c与x轴交于点A(m-2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,对称轴为l:x=1.
(1)求抛物线解析式.
(2)直线y=kx+2(k≠0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1<x2),当|x1-x2|最小时,求抛物线与直线的交点M和N的坐标.
(3)在对称轴直线l上是否存在一点Q,使△ACQ是等腰三角形,直接写出所有满足条件Q点的坐标.

查看答案和解析>>

同步练习册答案