【题目】某小区为了促进生活垃圾的分类处理,将生活垃圾分为:可回垃圾、厨余垃圾、其他垃圾三类,分别记为A,B,C:并且设置了相应的垃圾箱,依次记为a,b,c.
(1)若将三类垃圾随机投入三个垃圾箱,请你用树形图的方法求垃圾投放正确的概率:
(2)为了调查小区垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总重500kg生活垃圾,数据如下(单位:)
a | b | c | |
A | 40 | 15 | 10 |
B | 60 | 250 | 40 |
C | 15 | 15 | 55 |
试估计“厨余垃圾”投放正确的概率.
【答案】
(1)解:画树状图得:
![]()
∵共有6种情况,其中投放正确的有1种情况
∴垃圾投放正确的概率:
;
(2)解:“厨余垃圾”投放正确的概率为:
.
【解析】(1)根据题意画出树状图,由树状图可知总数为6,投放正确有1种,进而求出垃圾投放正确的概率;(2)由题意和概率的定义易得所求概率.
【考点精析】本题主要考查了列表法与树状图法和用频率估计概率的相关知识点,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( ) ![]()
A.115°
B.120°
C.130°
D.140°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我省某工艺厂为全运会设计了一款成本为每件20元的工艺品,投放市场试销后发现每天的销售量y(件)是售价x(元/件)的一次函数。当售价为22元/件时,每天销售量为780件;当售价为25元/件时,每天销售量为750件。
(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(A2013防城港)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下: 甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )![]()
A.甲正确,乙错误
B.乙正确,甲错误
C.甲、乙均正确
D.甲、乙均错误
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线 AB,CD 相交于点O,OE 平分∠AOD,OF⊥OC.
(1)图中∠AOF 的余角是_____ _____(把符合条件的角都填出来);
(2)如果∠AOC=120°,那么根据____ ______,可得∠BOD=__________°;
(3)如果∠1=32°,求∠2和∠3的度数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校教学楼AB的后面有一建筑物CD,在距离CD的正后方30米的观测点P处,以22°的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD上距离地面3米高的E处,测得教学楼的顶端A的仰角为45°,求教学楼AB的高度.
(参考数据:sin22°≈
,cos22°≈
,tan22°≈
)![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃. ![]()
(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD,则OE等于( ) ![]()
A.![]()
B.2 ![]()
C.2
D.2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE : EC=4 : 1,则线段DE的长为______.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com