【题目】工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?
【答案】
(1)解:材料锻造时,设y= (k≠0),
由题意得600= ,
解得k=4800,
当y=800时,
解得x=6,
∴点B的坐标为(6,800)
材料煅烧时,设y=ax+32(a≠0),
由题意得800=6a+32,
解得a=128,
∴材料煅烧时,y与x的函数关系式为y=128x+32(0≤x≤6).
∴锻造操作时y与x的函数关系式为y= (6<x≤150);
(2)解:把y=480代入y= ,得x=10,
10﹣6=4(分),
答:锻造的操作时间4分钟.
【解析】(1)首先根据题意,材料煅烧时,温度y与时间x成一次函数关系;锻造操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y=480代入y= 中,进一步求解可得答案.
科目:初中数学 来源: 题型:
【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若,,求△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区为了促进生活垃圾的分类处理,将生活垃圾分为:可回垃圾、厨余垃圾、其他垃圾三类,分别记为A,B,C:并且设置了相应的垃圾箱,依次记为a,b,c.
(1)若将三类垃圾随机投入三个垃圾箱,请你用树形图的方法求垃圾投放正确的概率:
(2)为了调查小区垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总重500kg生活垃圾,数据如下(单位:)
a | b | c | |
A | 40 | 15 | 10 |
B | 60 | 250 | 40 |
C | 15 | 15 | 55 |
试估计“厨余垃圾”投放正确的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知四边形ABCD的四条边相等,四个内角都等于90°,点E是CD边上一点,F是BC边上一点,且∠EAF=45°.
(1)求证:BF+DE=EF;
(2)若AB=6,设BF=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;
(3)过点A作AH⊥FE于点H,如图(2),当FH=2,EH=1时,求△AFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,需在一面墙上绘制两个形状相同的抛物绒型图案,按照图中的直角坐标系,最高点M到横轴的距离是4米,到纵轴的距离是6米;纵轴上的点A到横轴的距离是1米,右侧抛物线的最大高度是左侧抛物线最大高度的一半.(结果保留整数或分数,参考数据: = , = )
(1)求左侧抛物线的表达式;
(2)求右侧抛物线的表达式;
(3)求这个图案在水平方向上的最大跨度是多少米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com