精英家教网 > 初中数学 > 题目详情

【题目】下列美丽的图案,是轴对称图形但不是中心对称图形的是(
A.
B.
C.
D.

【答案】B
【解析】解:A、既是轴对称图形,又是中心对称图形,不符合题意; B、是轴对称图形,不是中心对称图形,符合题意;
C、既是轴对称图形,又是中心对称图形,不符合题意;
D、既是轴对称图形,又是中心对称图形,不符合题意.
故选B.
【考点精析】关于本题考查的轴对称图形和中心对称及中心对称图形,需要了解两个完全一样的图形关于某条直线对折,如果两边能够完全重合,我们就说这两个图形成轴对称,这条直线就对称轴;如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称;如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为 O的直径,弦AE//CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使 PED= C.

(1)求证:PE是 O的切线;
(2)求证:ED平分 BEP;
(3)若 O的半径为5,CF=2EF,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 AB,CD 相交于点O,OE 平分∠AOD,OF⊥OC.

(1)图中∠AOF 的余角是_____ _____(把符合条件的角都填出来);

(2)如果∠AOC=120°,那么根据____ ______,可得∠BOD=__________°;

(3)如果∠1=32°,求∠2∠3的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究题

【问题提出】
已知任意三角形的两边及夹角(是锐角),求三角形的面积.
【问题探究】
为了解决上述问题,让我们从特殊到一般展开探究.
探究:在Rt△ABC(图1)中,∠ABC=90°,AC=b,BC=a,∠C=α,求△ABC的面积(用含a、b、α的代数式表示)
在Rt△ABC中,∠ABC=90°
∴sinα=
∴AB=bsinα
∴SABC= BCAB= absinα
(1)探究一:
锐角△ABC(图2)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
(2)探究二:
钝角△ABC(图3)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
(3)【问题解决】
用文字叙述:已知任意三角形的两边及夹角(是锐角),求三角形面积的方法

(4)已知平行四边形ABCD(图4)中,AB=b,BC=a,∠B=α(0°<α<90°)
求:平行四边形ABCD的面积.(用含a、b、α的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD,则OE等于(
A.
B.2
C.2
D.2.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
(3)“五一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?

打折前一次性购物总金额

优惠措施

不超过400元

售价打九折

超过400元

售价打八折

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;

1则该校参加此次活动的师生人数为 (用含x的代数式表示);

2若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?

3已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DE是过点A的直线,BDDE于D,CEDE于点E;

(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:ABAC

(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案