精英家教网 > 初中数学 > 题目详情
7.如果$\frac{x}{x-3}$=2+$\frac{3}{x-3}$有增根,那么增根为x=3.

分析 增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3.

解答 解:∵方程有增根,
∴方程最简公分母为x-3=0,即增根是x=3,
故答案为x=3.

点评 本题考查了分式方程的增根,解决增根问题的步骤:
①确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.(1)计算:|-2|-(-$\sqrt{2}$)0+($\frac{1}{3}$)-1
(2)解不等式组:$\left\{\begin{array}{l}{x-2<0}\\{5x+1>2(x-1)}\end{array}\right.$,并在数轴上表示出其解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列运算错误的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$C.$\sqrt{8}$+$\sqrt{2}$=2D.(-$\sqrt{3}$)2=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,抛物线y=ax2+c经过A(1,0),B(0,-2)两点.连结AB,过点A作AC⊥AB,交抛物线于点C.
(1)求该抛物线的解析式;
(2)求点C的坐标;
(3)将抛物线沿着过A点且垂直于x轴的直线对折,再向上平移到某个位置后此抛物线与直线AB只有一个交点,请直接写出此交点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在四边形ABCD中,点O是AC的中点,
(1)若AB∥CD,求证:△OAB≌△OCD;
(2)在问题(1)中,若AC=BD,则四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.定义:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知直线y=-$\frac{1}{2}$x+2与坐标轴交于A、B两点,抛物线y=-x2+bx+c与x轴交于A、C两点,与y轴交于点B.
(1)求b、c的值.
(2)平行于y轴的直线x=2交直线AB于点D,交抛物线于点E.
①点P从原点O出发,沿x轴正方向以1个单位/秒的速度运动,设运动时间为t,过点P作x轴的垂线与直线AB交于点F,与抛物线交于点G,当t为何值时,FG:DE=1:2?
②将抛物线向上平移m(m>0)个单位后与y轴相交于点B′,与直线x=2相交于点E′,当E′O平分∠B′E′D时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列二次根式中能与$\sqrt{2}$合并的二次根式的是(  )
A.$\sqrt{12}$B.$\sqrt{\frac{3}{2}}$C.$\sqrt{\frac{2}{3}}$D.$\sqrt{18}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,⊙O的半径长6cm,点C在⊙O上,弦AB垂直平分OC于点D,则弦AB的长为(  )
A.9cmB.$6\sqrt{3}$cmC.$\frac{9}{2}$cmD.$3\sqrt{3}$cm

查看答案和解析>>

同步练习册答案