精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )

A.1对
B.2对
C.3对
D.4对

【答案】D
【解析】解:∵AB=AC,D为BC中点,

∴CD=BD,∠BDO=∠CDO=90°,

在△ABD和△ACD中,

∴△ABD≌△ACD;

∵EF垂直平分AC,

∴OA=OC,AE=CE,

在△AOE和△COE中,

∴△AOE≌△COE;

在△BOD和△COD中,

∴△BOD≌△COD;

在△AOC和△AOB中,

∴△AOC≌△AOB;

所以答案是:D.


【考点精析】认真审题,首先需要了解线段垂直平分线的性质(垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm

(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;

(2)点C与点O的距离的最大值=    cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D,E在△ABC的边BC上,连接AD,AE.下面有三个等式:①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,相构成以下三个命题:命题Ⅰ“如果①②成立,那么③成立”; 命题Ⅱ“如果①③成立,那么②成立”;命题Ⅲ“如果②③成立,那么①成立”.
(1)以上三个命题是真命题的为(直接作答)
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将命题同角的余角相等改成如果...,那么....”的形式.如果____________,那么______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A的坐标为(﹣2,3),则点A关于y轴的对称点的坐标是(  )

A. (﹣2,3) B. (2,3) C. (2,﹣3) D. (﹣2,﹣3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2a5b10,则abab的大小关系是(  )

A. ababB. ababC. ababD. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°.

(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若AC=8,BC=6,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高全民健康意识,20181125日共青团宝应县委继续组织了一次万人参加的全民健康行毅行活动,这次毅行活动的行程约为20000m,将20000m用科学记数法表示为______m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)

(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.
(2)求渔船和渔政船相遇时,两船与钓鱼岛的距离.
(3)在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?

查看答案和解析>>

同步练习册答案