精英家教网 > 初中数学 > 题目详情

【题目】如图,点D,E在△ABC的边BC上,连接AD,AE.下面有三个等式:①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,相构成以下三个命题:命题Ⅰ“如果①②成立,那么③成立”; 命题Ⅱ“如果①③成立,那么②成立”;命题Ⅲ“如果②③成立,那么①成立”.
(1)以上三个命题是真命题的为(直接作答)
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).

【答案】
(1)Ⅰ,Ⅱ,Ⅲ
(2)解:选择命题Ⅱ“如果①③成立,那么②成立”;

证明:∵AB=AC,

∴∠B=∠C,

在△ABD和△ACE中,

∴△ABD≌△ACE(SAS),

∴AD=AE.


【解析】解:(1)Ⅰ,Ⅱ,Ⅲ, 所以答案是:Ⅰ,Ⅱ,Ⅲ.
【考点精析】解答此题的关键在于理解命题与定理的相关知识,掌握我们把题设、结论正好相反的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题;经过证明被确认正确的命题叫做定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在平面直角坐标系中,直线l与y轴相交于点A(0,m)其中m<0,与x轴相交于点B(4,0).抛物线y=ax2+bx(a>0)的顶点为F,它与直线l相交于点C,其对称轴分别与直线l和x轴相交于点D和点E.

(1)设a=,m=﹣2时,

①求出点C、点D的坐标;

②抛物线y=ax2+bx上是否存在点G,使得以G、C、D、F四点为顶点的四边形为平行四边形?如果存在,求出点G的坐标;如果不存在,请说明理由.

(2)当以F、C、D为顶点的三角形与△BED相似且满足三角形FAC的面积与三角形FBC面积之比为1:3时,求抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:甲、乙两车分别从相距300(km)的M、N两地同时出发相向而行,其中甲到达N地后立即返回,图1、图2分别是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.

1试求线段AB所对应的函数关系式,并写出自变量的取值范围;

2当它们行驶到与各自出发地距离相等时,用了4.5h),求乙车的速度;

3在(2)的条件下,求它们在行驶的过程中相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于 两点.

)试确定上述反比例函数和一次函数的表达式.

)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有 个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).

)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是__________.

)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明通关的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】81的算术平方根是(  )

A. 9B. -9C. ±9D. 不存在

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )

A.1对
B.2对
C.3对
D.4对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC≌△FED,若∠B=45°,C=40°,则∠F=_____度.

查看答案和解析>>

同步练习册答案