精英家教网 > 初中数学 > 题目详情

【题目】小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中 ②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.

(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧( 是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?

【答案】
(1)

解:消防车不能通过该直角转弯.

理由如下:如图,作FH⊥EC,垂足为H,

∵FH=EH=4,

∴EF=4 ,且∠GEC=45°,

∵GC=4,

∴GE=GC=4,

∴GF=4 ﹣4<3,

即GF的长度未达到车身宽度,

∴消防车不能通过该直角转弯;


(2)解:若C、D分别与M′、M重合,则△OGM为等腰直角三角形,

∴OG=4,OM=4

∴OF=ON=OM﹣MN=4 ﹣4,

∴FG=OG﹣OF= ×8﹣(4 ﹣4)=8﹣4 <3,

∴C、D在 上,

设ON=x,连接OC,在Rt△OCG中,

OG=x+3,OC=x+4,CG=4,

由勾股定理得,OG2+CG2=OC2

即(x+3)2+42=(x+4)2

解得x=4.5.

答:ON至少为4.5米.


【解析】(1)过点F作FH⊥EC于点H,根据道路的宽度求出FH=EH=4m,然后根据等腰直角三角形的性质求出EF、GE的长度,相减即可得到GF的长度,如果不小于车身宽度,则消防车能通过,否则,不能通过;(2)假设车身C、D分别与点M′、M重合,根据等腰直角三角形的性质求出OG= CD=4,OC= CG=4 ,然后求出OF的长度,从而求出可以通过的车宽FG的长度,如果不小于车宽,则消防车能够通过,否则,不能通过;设ON=x,表示出OC=x+4,OG=x+3,又OG= CD=4,在Rt△OCG中,利用勾股定理列式进行计算即可求出ON的最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y= 在同一坐标系中的大致图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=kx+b与反比例函数y= (x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.

(1)求直线AB的解析式;
(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1)求证:CF=AD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是(
A.40
B.30
C.20
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若记y=f(x)= ,其中f(1)表示当x=1时y的值, 即f(1)= = ;f( )表示当x= 时y的值,即f( )= ;…;则f(1)+f(2)+f( )+f(3)+f( )+…+f(2011)+f( )=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是( )

A.(3,0)
B.(﹣1,2)
C.(﹣3,0)
D.(﹣1,﹣2)

查看答案和解析>>

同步练习册答案