【题目】如图,在矩形ABCD中,AC、BD相交于点O,过点A作BD的平行线AE交CB的延长线于点E.
(1)求证:BE=BC;
(2)过点C作CF⊥BD于点F,并延长CF交AE于点G,连接OG.若BF=3,CF=6,求四边形BOGE的周长.
![]()
【答案】(1)详见解析;(2)3
+21.
【解析】
(1)利用平行线等分线段定理证明即可.
(2)根据勾股定理得BC=
,易证△CBF∽△DBC,得BD=15,根据矩形的性质和直角三角形的性质得OG=
,利用平行线等分线段定理得BE=3
,由中位线的性质得EG=6,进而即可求解.
(1)∵四边形ABCD是矩形,
∴OC=OA,
∵OB∥AE,
∴BC=BE;
(2)∵CF⊥BD,
∴∠CFB=90°,
在Rt△BCF中,BC=
,
∵四边形ABCD是矩形,
∴∠BCD=90°=∠BFC,AC=BD,
∵∠CBF=∠DBC,
∴△CBF∽△DBC,
∴
,
∴BD=
=15,OB=OD=
,
∴AC=BD=15,
∵CF⊥BD,BD∥AE,
∴CG⊥AE,
∴∠AGC=90°,
∵OC=OA,
∴OG=
AC=
,
∵OC=OA,OF∥AG,
∴CF=FG,
∴BC=BE=3
,
∴EG=2BF=6,
∴四边形BOGE的周长=3
+6+
+
=3
+21.
科目:初中数学 来源: 题型:
【题目】如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC .
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P(
,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的
?若存在,请求出点N的坐标;若不存在,请说明理由.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为S2甲,S2乙,则S2甲与S2乙大小关系为( )
![]()
A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如图的方式放置。点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x +1和x轴上,则点A6的坐标是____________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在直角坐标系中的位置如图,其中A点的坐标是(﹣2,3)
(1)△ABC绕点O顺时针旋转90°得到△A1B1C1,请作出△A1B1C1,并写出A点的对应点A1的坐标;
(2)若△ABC经过平移后A点的对应点A2的坐标是(2,﹣1),请作△A2B2C2,并计算平移的距离.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:
,
,
,
,垂足分别为
,
,
(1)如图1,①线段
和
的数量关系是__________;
②请写出线段
,
,
之间的数量关系并证明.
![]()
(2)如图2,若已知条件不变,上述结论②还成立吗?如果不成立,请直接写出线段
,
,
之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,
为
边上的中点.
![]()
(1)若
于
,
于
,连接
.判断
的形状,并证明;
(2)若
分别是
上的中线,连接
.判断
的形状,并说明理由;
(3)若
分别是
的平分线,连接
.判断
的关系,不需证明;
(4)若分别在
上任取一点
,且
,连接
.在不添加辅助线的情况下,你还能得到哪些不同于上面的正确结论?请写出至少四条,不需证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com