精英家教网 > 初中数学 > 题目详情

【题目】在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分ADC,如图.大家一起热烈地讨论交流,小英第一个得出如下结论:(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.其中正确的结论是_____.(将你认为正确结论的序号都填上)

【答案】(1)(3)(4)(5).

【解析】

可以通过作辅助线来得解,取AD的中点F,连接EF.根据平行线的性质可证得(1)(4)(5),根据梯形中位线定理可证得(3)正确.根据全等三角形全等的判定可证得(2)的正误,即可得解.

如图:取AD的中点F,连接EF.


∵∠B=∠C=90°,
∴AB∥CD;[结论(5)正确],
∵EBC的中点,FAD的中点,
∴EF∥AB∥CD,2EF=AB+CD(梯形中位线定理)①;
∴∠CDE=∠DEF(两直线平等,内错角相等),
∵DE平分∠ADC,
∴∠CDE=∠FDE=∠DEF,
∴DF=EF;
∵FAD的中点,∴DF=AF,
∴AF=DF=EF②,
由①得AF+DF=AB+CD,即AD=AB+CD;[结论(3)正确],
由②得∠FAE=∠FEA,
AB∥EF可得∠EAB=∠FEA,
∴∠FAE=∠EAB,即EA平分∠DAB;[结论(1)正确],
由结论(1)和DE平分∠ADC,且DC∥AB,可得∠EDA+∠DAE=90°,则∠DEA=90°,即AE⊥DE;[结论(4)正确].
由以上结论及三角形全等的判定方法,无法证明△EBA≌△DCE,结论(2)错误.
正确的结论有(1)(3)(4)(5),
故答案为:(1)(3)(4)(5).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.

(1)求证:DF是⊙O的切线;
(2)若CF=1,DF= ,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC(即三角形的顶点都在格点上).

1)在图中作出ABC关于直线l对称的A1B1C1 (要求AA1BB1CC1相对应);

2)求ABC的面积;

3)在直线l上找一点P,使得PAC的周长最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

课外兴趣小组活动时,老师提出了如下问题:

如图①ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到ADC≌△EDB,依据是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三边关系可求得AD的取值范围是

解后反思:题目中出现中点”、“中线等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.

【初步运用】

如图②ADABC的中线,BEACE,交ADF,且AEEF.若EF=3,EC=2,求线段BF的长.

【灵活运用】

如图③,在ABC中, A=90°,DBC中点, DEDFDEAB于点EDFAC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有(

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为等腰三角形,AB=AC,∠D=∠E,∠BAD=∠CAE.

(1)写出一对全等的三角形:   ≌△   

(2)证明(1)中的结论;

(3)求证:点G为BC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点

(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q
①当四边形PBQC为菱形时,求点P的坐标;
②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,MBA=NDC,下列条件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

同步练习册答案