精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点

(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q
①当四边形PBQC为菱形时,求点P的坐标;
②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.

【答案】
(1)

解:将B(4,0)代入y=﹣x2+3x+m,

解得,m=4,

∴二次函数解析式为y=﹣x2+3x+4,

令x=0,得y=4,

∴C(0,4),


(2)

解:存在,

理由:∵B(4,0),C(0,4),

∴直线BC解析式为y=﹣x+4,

当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,

∴x2﹣4x+b=0,

∴△=14﹣4b=0,

∴b=4,

∴M(2,6)


(3)

解:①如图,

∵点P在抛物线上,

∴设P(m,﹣m2+3m+4),

当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,

∵B(4,0),C(0,4)

∴线段BC的垂直平分线的解析式为y=x,

∴m=﹣m2+3m+4,

∴m=1±

∴P(1+ ,1+ )或P(1﹣ ,1﹣ ),

②如图,

设点P(t,﹣t2+3t+4),

过点P作y轴的平行线l,过点C作l的垂线,

∵点D在直线BC上,

∴D(t,﹣t+4),

∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,

BE+CF=4,

∴S四边形PBQC=2SPDC=2(SPCD+SBD)=2( PD×CF+ PD×BE)=4PD=﹣4t2+16t,

∵0<t<4,

∴当t=2时,S四边形PBQC最大=16


【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】自学下面材料后,解答问题.

分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:

(1)若>0,>0,则>0;若<0,<0,则>0;

(2)若>0,<0,则<0;若<0,>0,则<0.

反之:(1)若>0,则

(2)若<0,则____________________.

(3)根据上述规律,求不等式的解集.

(4)试求不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分ADC,如图.大家一起热烈地讨论交流,小英第一个得出如下结论:(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.其中正确的结论是_____.(将你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:关于三角函数还有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
例:tan75°=tan(45°+30°)= = =2+
根据以上阅读材料,请选择适当的公式解答下面问题

(1)计算:sin15°;
(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为 米,请你帮助李三求出纪念碑的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1 , C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC= ,则AF的长度为(

A.2﹣
B.
C.
D. ﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则BDC的度数为(  )

A. α B. α C. 90﹣α D. 90﹣α

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形是半高三角形,且斜边则它的周长等于_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.

(1)求证:DE=CE.

(2)若∠CDE=35°,求∠A 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5
(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?
(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?

查看答案和解析>>

同步练习册答案