精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠C90°,∠B30°,以A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列结论中正确的个数是(  )

AD是∠BAC的平分线;②∠ADC60°;③ADBD;④点DAB的垂直平分线上⑤SABDSACD

A.2B.3C.4D.5

【答案】C

【解析】

根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确,根据直角三角形中30°角所对的直角边等于斜边的一半可得④正确,由ABAC的倍数关系可得到SABDSACD的关系.

利用基本作图得AD平分∠BAC,所以①正确;

∵∠C90°,∠B30°

∴∠BAC60°

AD平分∠BAC

∴∠CAD=∠DAB30°

∴∠ADC90°﹣∠CAD60°,所以②正确;

∵∠DAB=∠B30°

DADB,所以③正确;

∴点DAB的垂直平分线上,所以④正确;

ADCD

BDCD

SABDSACD,所以⑤错误.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知中,CDAB边上中线,ECB边上的一个动点.

CD的长;

如图1,连接AE,交CD于点F,当AE平分时,求CECF的长;

如图2,连接DE,将沿DE翻折至,连接BG,直接写出间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,绕点C旋转,角的两边分别与AB、AD交于点E、F,同时也分别与DA、BA的延长线交于点G、H.

如图1,若

求证:

绕点C旋转的过程中,线段AC、AG、AH之间存在着怎样的数量关系?并说明理由.

如图2,若,经探究得的值为常数k,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中, DAB边的中点,EAC边上一点,联结DE,过点DBC边于点F,联结EF

(1)如图1,当时,求EF的长;

(2)如图2,当点EAC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;

(3)如图3,联结CDEF于点Q,当是等腰三角形时,请直接写出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC外作射线AD,使得ADAC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.

(1)依题意补全图1;

(2)在图1中,求△BPC的度数;

(3)直接写出使得△PBC是等腰三角形的α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中,Ax轴正半轴,B01),∠OAB30°

1)如图1,已知AB2.点Cy轴的正半轴上,当ABC为等腰三角形时,直接写出点C的坐标为   

2)如图2,以AB为边作等边ABEADABOA的垂直平分线于D,求证:BDOE

3)如图3,在(2)的条件下,连接DEABF,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,则∠BAE的度数为何?(  )

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在RtABC中,∠C=90°,AC=15,BC=8,DAB的中点,E点在边AC上,将△BDE沿DE折叠得到△B1DE,若△B1DE与△ADE重叠部分面积为△ADE面积的一半,则CE=_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,计算下列五角星图案中五个顶角的度数和. 即:求∠A+B+C+D+E的大小.

2)如图2,若五角星的五个顶角的度数相等, 求∠1的大小.

查看答案和解析>>

同步练习册答案