精英家教网 > 初中数学 > 题目详情
如图,△ABC中,BA=BC,∠C=72°,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,DE∥AC交AB于E,则图中的等腰三角形共有(  )  个.
分析:先根据等腰三角形的性质求出∠ABC及∠BAC的度数,再根据等腰三角形的判定定理即可得出结论.
解答:解:∵△ABC中,BA=BC,
∴△ABC是等腰三角形;
∵∠C=72°,
∴∠ABC=36°,∠BAC=72°,
∵AF是△ABC的角平分线,
∴∠BAF=∠CAF=
1
2
∠BAC=36°,
∴△ABF是等腰三角形;
∵∠CAF=
1
2
∠BAC=36°,∠C=72°,
∴∠AFC=72°,
∴△AFC是等腰三角形;
∵AF平分∠BAC,
∴∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD=∠BAD,
∴AE=ED,
∵∠EDB+∠ADE=90°,
∴∠BDE+∠BAD=90°,
∵∠EBD+∠BAD=90°,
∴∠BDE=∠EBD,
∴BE=ED,
∴AE=BE,
∴AE=BE=ED,
∴△AED,△BED是等腰三角形;
∵∠BAF=36°,AE=ED,
∴∠ADE=36°,
∴∠BED=72°,
∵∠ABC=36°,
∴∠BGE=∠BED=72°,
∴△BEG是等腰三角形;
∵∠DGF=∠BGE=72°,∠AFC=∠DFG=72°,
∴△DGF是等腰三角形.
综上所述,等腰三角形有:△ABC,△ABF,△AFC,△AED,△BED,△BEG,△DGF共7个.
故选C.
点评:本题考查的是等腰三角形的判定定理,在解答此类题目时往往用到三角形的内角和是180°这一隐含条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案