精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC和△CEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE,线段AF和BE有怎样的大小关系?证明你的猜想.

【答案】解:AF=BE.理由如下:
∵△ABC和△CEF是两个不等的等边三角形,
∴AC=BC,CE=CF,∠ACB=60°,∠ECF=60°,
在△ACF和△BCE中

∴△ACF≌△BCE,
∴AF=BE.
【解析】先利用等边三角形的性质得到AC=BC,CE=CF,∠ACB=60°,∠ECF=60°,再利用“SAS”证明△ACF≌△BCE,然后根据全等三角形的性质得AF=BE.
【考点精析】掌握等边三角形的性质是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AQ=PQPR=PSPRABRPSACS,则三个结论:①AS=ARQPAR③△BPR≌△QPS一定正确的是( )

A. 全部正确 B. 仅①和②正确 C. 仅①正确 D. 仅①和③正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明到离家2.1千米的学校参加八年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校,已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍。

1)李明步行的速度(单位:米/分)是多少?

2)李明能否在联欢会开始前赶到学校?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请认真观察图形,解答下列问题:

(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);
(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣3,﹣2,﹣1,0,1,2这六个数字中随机抽取一个数,记为a,a的值即使得不等式组 无解,又在函数y= 的自变量取值范围内的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元.
(1)求该童装4月份的销售单价;
(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了我最想选的一门课调查,并将调查结果绘制成如图统计图表(不完整)

选修课

A

B

C

D

E

F

人数

20

30

根据图标提供的信息,下列结论错误的是(

A. 这次被调查的学生人数为200 B. 扇形统计图中E部分扇形的圆心角为72°

C. 被调查的学生中最想选F的人数为35 D. 被调查的学生中最想选D的有55

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点B的坐标是(﹣1,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,写出点P的坐标(不要求写解题过程).

查看答案和解析>>

同步练习册答案