精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知点B的坐标是(﹣1,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,写出点P的坐标(不要求写解题过程).

【答案】
(1)

解:由B(﹣1,0)可知OB=1,

OA=OC=4OB

OA=OC=4,OB=1,

C(0,4),A(4,0).

设抛物线的解析式是y=ax2+bx+c

解得:

则抛物线的解析式是y=﹣x2+3x+4;


(2)

解:存在.

①当以C为直角顶点时,

过点CCP1AC,交抛物线于点P1

过点P1y轴的垂线,垂足是M,M,如图1.

∵∠A CP1=90°,∴∠MCP1+∠ACO=90°.

∵∠ACO+∠OAC=90°,

∴∠MCP1=∠OAC

OA=OC

∴∠MCP1=∠OAC=45°,

∴∠MCP1=∠MP1C

MC=MP1

Pm,﹣m2+3m+4),

m=﹣m2+3m+4﹣4,

解得:m1=0(舍去),m2=2.

∴m=2,

此时﹣m2+3m+4=6,

∴P1P的坐标是(2,6).

②当点A为直角顶点时,

AAP2AC交抛物线于点P2

过点P2y轴的垂线,垂足是NAPy轴于点F,如图2.

P2Nx轴,

由∠CAO=45°得∠OAP2 =45°,

∴∠FP2N=45°,AO=OF

P2N=NF

P2n,﹣n2+3n+4),

则﹣n+4=﹣(﹣n2+3n+4),

解得:n1=﹣2,n2=4(舍去),

∴n=﹣2,

此时﹣n2+3n+4=﹣6,

P2的坐标是(﹣2,﹣6).

综上所述:P的坐标是(2,6)或(﹣2,﹣6);


(3)

解:当EF最短时,点P的坐标是( ,2)或( ,2).

解题过程如下:

连接OD,由题意可知,四边形OFDE是矩形,则OD=EF

根据垂线段最短可得:当ODAC时,OD(即EF最短.

由(1)可知,在直角△AOC中,OC=OA=4.

根据等腰三角形的性质可得:DAC的中点.

又∵DFOC

∴△AFD∽△AOC,

= =

DF= OC=2,

∴点D的纵坐标是2,

∴点P的纵坐标也是2,

解﹣x2+3x+4=2得,

x1= ,x2=

∴点P的坐标为( ,2)或( ,2).


【解析】(1)只需求出A、B、C三点的坐标,然后运用待定系数法就可求出抛物线的解析式;(2)可分两种情况(①以C为直角顶点,②以A为直角顶点)讨论,然后根据点P的纵、横坐标之间的关系建立等量关系,就可求出点P的坐标;(3)连接OD , 易得四边形OFDE是矩形,则OD=EF , 根据垂线段最短可得当ODAC时,ODEF最短,然后只需求出点D的纵坐标,就可得到点P的纵坐标,就可求出点P的坐标.
【考点精析】本题主要考查了抛物线与坐标轴的交点的相关知识点,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△CEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE,线段AF和BE有怎样的大小关系?证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线.
(2)过点E作EH⊥AB于点H,求证:CD=HF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以BC为直径的圆交△ABC的两边AB、AC于点D、E,点E恰为AC的中点,BF为△ABC的外角平分线,点F在圆上,请你仅用一把无刻度的直尺,过点A作一条线段,将△ABC分成面积相等的两部分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数 (m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司市场营销部的营销员的个人月收入y()与该营销员每月的销售量x(万件)成一次函数关系,其图象如图11所示.根据图象提供的信息,解答下列问题:

(1)求出营销员的个人月收入y()与该营销员每月的销售量x(万件)(x≥0)之间的函数关系式;

(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABC与等腰△ADE的顶点A重合,AD=AE,∠DAE=30°,将△ADE绕顶点A旋转,在旋转过程中,当BD=CE时,∠BAD的大小可以是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.

(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)(5,0),并写出点A,D,E,F,G的坐标;

(2)连接BECG相交于点H,BECG相等吗?并计算∠BHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).

(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

同步练习册答案