【题目】(10分)如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当BC= AB时,四边形ABFG是菱形;
(3)若∠B=60°,当BC= AB时,四边形AECG是正方形.
【答案】(1)证明见试题解析;(2);(3).
【解析】
试题分析:此题主要考查了平行四边形的性质,正方形的判定,菱形的判定,以及直角三角形的性质.关键是熟练掌握菱形的判定定理,以及平行四边形的性质.(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:DG=FC;即可得到BE=DG;要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF时,BC与AB的数量关系即可;(3)当四边形AECG是正方形时,AE=EC,由AE=AB,可得EC=AB,再有BE=AB可得BC=AB.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成,∴CG⊥AD.AE=CG∴∠AEB=∠CGD=90°.∵在Rt△ABE与Rt△CDG中,,
∴Rt△ABE≌Rt△CDG(HL),∴BE=DG.
当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∴BE=AB(直角三角形中30°所对直角边等于斜边的一半),∵BE=CF,BC=AB,∴EF=AB.∴AB=BF.∴四边形ABFG是菱形.
(3)解:BC=AB时,四边形AECG是正方形.∵AE⊥BC,GC⊥CB,∴AE∥GC,∠AEC=90°,∵AG∥CE,∴四边形AECG是矩形,当AE=EC时,矩形AECG是正方形,∵∠B=60°,∴EC=AE=ABsin60°=AB,BE=AB,∴BC=AB.
科目:初中数学 来源: 题型:
【题目】已知,如图,直线y=x4与x轴,y轴分别交于B、A,将该直线绕A点顺时针旋转α,且tanα=,旋转后与x轴交于C点.
(1)求A、B、C的坐标;
(2)在x轴上找一点P,使有一动点能在最短的时间内从点A出发,沿着A-P-C的 运动到达C点,并且在AP上以每秒2个单位的速度移动,在PC上以每秒个单位移动,试用尺规作图找到P点的位置(不写作法,保留作图痕迹),并求出所用的最短时间t.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,小黄车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.
(1)观察图形填写下表:
(2)如果x节链条的总长度是y,求y与x之间的关系式;
(3)如果一辆小黄车的链条(安装前)由80节这样的链条组成,那么这根链条完成链接(安装到小黄车)后,链条的总长度是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com