精英家教网 > 初中数学 > 题目详情

【题目】abc为△ABC的三边。

(1)判断代数式a2abc+b的值与0的大小关系,并说明理由;

(2)满足a+b+c=ab+ac+bc,试判断△ABC的形状.

【答案】1a2abc+b<0;(2)△ABC是等边三角形.

【解析】

1)根据完全平方公式和平方差公式先将代数式进行变形,然后利用三角形三边关系即可判断.

2)根据完全平方公式将题目所给的等式进行变形,然后利用非负性即可求出答案.

(1) a2abc+b=(ab) c=(ab+c)(abc)

a+c>ba<b+c

ab+c>0abc<0

a2abc+b<0

(2)a+b+c=ab+ac+bc

2a+2b+2c2ab2ac2bc=0

a2ab+b+b2bc+c+a2ac+c=0

(ab) +(bc) +(ac) =0

ab=0bc=0ac=0

a=b=c

∴△ABC是等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:课外兴趣小组活动时,老师提出了如下问题:

如图1ABC中,若AB=5AC=3,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长ADE,使得DE=AD,再连接BE(或将ACD绕点D逆时针旋转180°得到EBD),把ABAC2AD集中在ABE中,利用三角形的三边关系可得2AE8,则1AD4

感悟:解题时,条件中若出现中点”“中线字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC中,DBC边上的中点,DEDFDEAB于点EDFAC于点F,连接EF

①求证:BE+CFEF②若∠A=90°,探索线段BECFEF之间的等量关系,并加以证明;

2)问题拓展:如图3,在平行四边形ABCD中,AD=2ABFAD的中点,作CEAB,垂足E在线段AB上,联结EFCF,那么下列结论①∠DCF=BCDEF=CFSBEC=2SCEF④∠DFE=3AEF.中一定成立是 (填序号).

图1 图2 图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:

已知:如图,四边形ABCD中,∠A=106°, ∠ABC=74°,BD⊥DC于点D, EF⊥DC于点F.

求证:∠1=∠2.

证明: ∵∠A=106°,∠ABC=74° (已知)

∴∠A+∠ABC=180°

( )

∴∠1=

∵BD⊥DC,EF⊥DC (已知)

∴∠BDF=∠EFC=90°( )

∴BD∥ ( )

∴∠2= ( )

(已证)

∴∠1=∠2 ( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边ABx轴上,AB的中点与原点O重合,AB2AD1,点Q的坐标为(02).点Px0)在边AB上运动,若过点QP的直线将矩形ABCD的周长分成21两部分,则x的值为(  )

A. -B. -C. -D. -

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,点是射线上一动点(与点不重合),分别平分,分别交射线于点.

1

2)当点运动到某处时,,求此时的度数.

3)当点运动时,的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有   人;

(2)请你将条形统计图(2)补充完整;

(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是( )

A. ②④B. ②③C. ①④D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.

(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?

(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知两地相距6千米,甲骑自行车从地出发前往,同时乙从地出发步行前往.

(1)已知甲的速度为16千米/小时,乙的速度为4千米/小时,求两人出发几小时后甲追上乙;

(2)甲追上乙后,两人都提高了速度,但甲比乙每小时仍然多行12千米,甲到达地后立即返回,两人在两地的中点处相遇,此时离甲追上乙又经过了2小时.两地相距多少千米.

查看答案和解析>>

同步练习册答案