精英家教网 > 初中数学 > 题目详情

【题目】ABC中,AB=AC,A=60°,点D是线段BC的中点,EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.

(1)如图1,若DFAC,垂足为F,AB=4,求BE的长;

(2)如图2,将(1)中的EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证:

(3)如图3,将(2)中的EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DNAC于点N,若DN=FN,求证:

【答案】2;见解析;见解析.

【解析】

试题根据四边形的内角和定理得出DEAB,从而得到BE的长度;取AB的中点G,连接DG,得出DG为ABC的中位线,则DG=DC,BGD=C=60°,根据四边形对角互补得出GED=DFC,从而得到DEG和DFC全等,得到EG=CF,得出答案;取AB的中点G,连接DG,同,易证DEG≌△DFC得出EG=CF,设CN=x,根据RtDCN得出CD=2x,DN=x,根据题意得出EG、BE与x的关系,从而进行说明.

试题解析:(1)、由四边形AEDF的内角和为,可知DEAB,故BE=2

(2)、取AB的中点G,连接DG 易证:DG为ABC的中位线,故DG=DC,BGD=C=60°

又四边形AEDF的对角互补,故GED=DFC ∴△DEG≌△DFC 故EG=CF

BE+CF=BE+EG=BG=AB

(3)、取AB的中点G,连接DG 同,易证DEG≌△DFC 故EG=CF

故BE-CF=BE-EG=BG= 在RtDCN中,CD=2x,DN=

在RTDFN中,NF=DN=,故EG=CF= BE=BG+EG=DC+CF=2x+=

故BE+CF=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的港珠澳大桥是目前桥梁设计中广泛采用的斜拉桥,它用粗大的钢索将桥面拉住,为检测钢索的抗拉强度,桥梁建设方从甲、乙两家生产钢索的厂方各随机选取5根钢索进行抗拉强度的检测,数据统计如下(单位:百吨)

甲、乙两厂钢索抗拉强度检测统计表

钢索

1

2

3

4

5

平均数

中位数

方差

甲厂

10

11

9

10

12

10.4

10

1.04

乙厂

10

8

12

7

13

a

b

c

1)求乙厂5根钢索抗拉强度的平均数a(百吨)、中位数b(百吨)和方差c(平方百吨).

2)桥梁建设方决定从抗拉强度的总体水平和稳定性来决定钢索的质量,问哪一家的钢索质量更优?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:

销售单价x(元/件)

20

25

30

35

每月销售量y(万件)

60

50

40

30

(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.

(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.

(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成淡薄”、“一般”、“较强”、“很强四个层次,并绘制成如下两幅尚不完整的统计图.

根据以上信息,解答下列问题:

(1)这次调查一共抽取了 名学生,其中安全意识为很强的学生占被调查学生总数的百分比是

(2)请将条形统计图补充完整;

(3)该校有1800名学生,现要对安全意识为淡薄”、“一般的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标。如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域,已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中,则下面叙述中正确的是( )

A. A的横坐标有可能大于3

B. 矩形1是正方形时,点A位于区域②

C. 当点A沿双曲线向上移动时,矩形1的面积减小

D. 当点A位于区域①时,矩形1可能和矩形2全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】跳绳是大家喜闻乐见的一项体育运动,集体跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看作抛物线,下图是小明和小亮甩绳子到最高处时的示意图,两人拿绳子的手之间的距离为4,离地面的高度为1,以小明的手所在位置为原点建立平面直角坐标系.

(1)当身高为15的小红站在绳子的正下方,且距小明拿绳子手的右侧1处时,绳子刚好通过小红的头顶,求绳子所对应的抛物线的表达式;

(2)若身高为的小丽也站在绳子的正下方.

①当小丽在距小亮拿绳子手的左侧1.5处时,绳子能碰到小丽的头吗?请说明理由;

②设小丽与小亮拿绳子手之间的水平距离为,为保证绳子不碰到小丽的头顶,的取值范围.(参考数据: 3.16)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数的图象经过点,直线x轴交于点

1)求的值;

2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D

①当时,判断线段PDPC的数量关系,并说明理由;

②若,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

同步练习册答案