【题目】在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.
(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.
(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.
【答案】(1)见解析;(2)见解析.
【解析】
(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°﹣∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形;
(2)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.
(1)证明:∵AB∥CB′,
∴∠B=∠BC B′=30°,
∴∠BC A′=90°﹣30°=60°,
∵∠A′=∠A=60°,
∴△A′CD是等边三角形;
(2)如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,
此时θ=∠ACA1=120°,
∵∠B′=30°,∠A′CB′=90°,
设AC=a,
∴A′C=AC=A′B′=a,
∵AC中点为E,A′B′中点为P,∠A′CB′=90°
∴CP=A′B′=a,EC=a,
∴EP=EC+CP=a+a=AC.
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A. ac>0
B. 当x>1时,y随x的增大而增大
C. 2a+b=1
D. 方程ax2+bx+c=0有一个根是x=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线长为.点E、F分别在正方形ABCD的边AB、CD上,四边形EFMG的边MG分别与正方形ABCD的边AB、BC交于点H、K,边MF与正方形ABCD的边BC交于点N.若四边形EFDA沿直线EF折叠后能与四边形EFMG重合,则图中四个三角形△EGH、△HBK、△KMN、△NCF的周长的和为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束. 在整个运动过程中,点C运动的路程是( )
A. 4 B. 6 C. 4﹣2 D. 10﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线C:y=x2+3x-10平移到C′.若两条抛物线C,C′关于直线x=1对称,则下列平移方法中正确的是( )
A. 将抛物线C向右平移个单位 B. 将抛物线C向右平移3个单位
C. 将抛物线C向右平移5个单位 D. 将抛物线C向右平移6个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com