精英家教网 > 初中数学 > 题目详情

【题目】1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束. 在整个运动过程中,点C运动的路程是(  )

A. 4 B. 6 C. 4﹣2 D. 10﹣4

【答案】D

【解析】

由于在运动过程中,原点始终在上,则弧的长保持不变,弧所对应的圆周角保持不变,等于,故点在与轴夹角为的射线上运动,顶点的运动轨迹2应是一条线段,且点移动到图中位置最远,然后又慢慢移动到结束,点经过的路程应是线段 .

如图3,连接

是直角,中点,

半径,

原点始终在上,

连接,则

在与轴夹角为的射线上运动

如图4,

如图5,

总路径为:

故选.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明和小亮分别从同一直线跑道AB两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_____秒,小亮回到B端.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BCAC,点E在BC上,CE=CA,点D在AB上,连接DE,ACB+ADE=180°,作CHAB,垂足为H.

(1)如图a,当ACB=90°时,连接CD,过点C作CFCD交BA的延长线于点F.

①求证:FA=DE;

②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;

(2)如图b,当ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C

(1)如图1,当ABCB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.

(2)若EAC的中点,PA'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图平行四边形ABCD的顶点Ay轴的正半轴上坐标原点O在边BCAD=6,OAOB的长分别是关于x的一元二次方程x2﹣7x+12=0的两个根.且OAOB

(1)求点CD的坐标

(2)求证射线AO是∠BAC的平分线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线y=x轴交于点A,与双曲线在第一象限内交于点BBCx轴于点COC=3AO

(1)求双曲线的解析式;

(2)直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,弦CD⊥AB于点E,过点C的切线交AB的延长线于点F,连接DF.

(1)求证:DF⊙O的切线;

(2)连接BC,若∠BCF=30°,BF=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:

(1)本次抽样调查的样本容量是  ,表示“D级(不喜欢)”的扇形的圆心角为  °;

(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;

(3)若从本次调查中的A级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=2,点ECD上,DE=1,点F是边AB上一动点,以EF为斜边作RtEFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________.

查看答案和解析>>

同步练习册答案