精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线yax2xca≠0)x轴交于点AB两点,

其中A(-1,0),y轴交于点C(0,2).

(1)求抛物线的表达式及点B坐标

(2)E是线段BC上的任意一点(点EBC不重合),过点E作平行于y轴的直线交抛物线于点F,交x轴于点G

①设点E的横坐标为m,用含有m的代数式表示线段EF的长;

②线段EF长的最大值是

【答案】(1)y=-x2x+2,B(4,0);(2)m2+2m; 2

【解析】(1)A(10) C(02)代入yax2xc代入,求a,c的值,得到函数解析式.再令y0,可求x,从而求B坐标;

(2)用待定系数法先求直线BC的函数表达式,再根据EF=FG-GE=-m2m+2-(-m+2),可得代数式;求二次函数顶点纵坐标可得.

1)将A(10) C(02)代入yax2xca≠0

得:a=- c2

y=-x2x2

y0时,x1=-1x24,故B(40)

2)①设直线BC的函数表达式为ykxb,将B(40) C(02)代入

得:y=-x2

EFFGGE=-m2m2(m2)

=-m22m

2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2,乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,把球上的数字记为x,再从乙袋中任意摸出一个小球,把球上的数字记为y,以此确定点M的坐标(x,y).

(1)请你用画树状图或列表的方法(只选其中一种),写出点M所有可能的坐标;

(2)求点M(x,y)在函数y=﹣2x的图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在水果销售旺季,某水果店购进一优质水果,进价为 20 /千克,售价不低于 20 /千克,且不超过 32 /千克,根据销售情况,发现该水果一天的销售量 y(千克与该天的售价 x(/千克满足如下表所示的一次函数关系.

销售量 y(千克)

34.8

32

29.6

28

售价 x(元/千克)

22.6

24

25.2

26

(1)某天这种水果的售价为 23.5 /千克,求当天该水果的销售量.

(2)如果某天销售这种水果获利 150 元,那么该天水果的售价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级1班体育委员统计了全班同学60秒跳绳的次数,并绘制出如下频数分布表和频数分布直方图:

次数

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

频数

a

4

12

16

8

3

结合图表完成下列问题:

(1)a=   

(2)补全频数分布直方图;

(3)写出全班人数是   ,并求出第三组“120≤x<140”的频率(精确到0.01)

(4)若跳绳次数不少于140的学生成绩为优秀,则优秀学生人数占全班总人数的百分之几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数ab,我们可以用min{ab}表示ab两数中较小的数,例如min{3,-1}=-1min{22}2. 类似地,若函数y1y2都是x的函数,则ymin{y1y2}表示函数y1y2取小函数

1)设y1xy2,则函数ymin{x }的图像应该是 中的实线部分.

2)请在下图中用粗实线描出函数ymin{(x2)2(x2)2}的图像,并写出该图像的三条不同性质:

3)函数ymin{(x4)2(x2)2}的图像关于 对称.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了发展学生的核心素养,培养学生的综合能力,某中学利用阳光大课间,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)

(1)依据折线统计图,得到下面的表格:

射击次序(次)

1

2

3

4

5

6

7

8

9

10

甲的成绩(环)

8

9

7

9

8

6

7

a

10

8

乙的成绩(环)

6

7

9

7

9

10

8

7

b

10

其中a=   ,b=   

(2)甲成绩的众数是   ,乙成绩的中位数是   环;

(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?

(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到11女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙OABC的外接圆,且AB=BC=CD,ABCD,连接BD.

(1)求证:BD是⊙O的切线;

(2)若AB=10,cosBAC=,求BD的长及⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,.分别以点为圆心,大于长为半径画弧,两弧交于点,作射线于点,交于点.若点的中点,的周长为8,则的长为(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.

(1)求A、B两点的坐标及二次函数解析式;

(2)如图2,作直线AD,过点BAD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:

(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案