精英家教网 > 初中数学 > 题目详情

【题目】用同样大小的小正方形纸片,按下图的方式拼正方形

规律:第①个图形中有1个小正方形;

第②个图形比第①个图形多3个小正方形;

第③个图形比第②个图形多5个小正方形;……

(n+1)个图形比第n个图形多________个小正方形

可发现以下结论:(1)1+3+5+……+(2n-1)= ____________

【答案】 (2n+1) n2

【解析】

根据已知图形得出第2个图形比第1个图形多:4-1=3个;第3个图形比第2个图形多:9-4=5个;第4个图形比第3个图形多:16-9=7个;即可得出后面一个图形比第前个图形多的个数是连续奇数,进而得出公式即可.

(1)∵第2个图形比第1个图形多:4-1=3个;

3个图形比第2个图形多:9-4=5个;

4个图形比第3个图形多:16-9=7个;

∴第(n+1)个图形比第n个图形多:(2n+1)

观察图形,可得:1+3+5+……+(2n-1)= n2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入表是某周的生产情况超产为正、减产为负

星期

增减

根据记录可知前三天共生产多少辆;

产量最多的一天比产量最少的一天多生产多少辆;

该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1)求证:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是等边三角形,DBC边上的一个动点(点D不与BC重合)△ADF是以AD为边的等边三角形,过点FBC的平行线交射线AC于点E,连接BF

1)如图1,求证:△AFB≌△ADC

2)请判断图1中四边形BCEF的形状,并说明理由;

3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD,AE⊥BC,垂足为点E,CE=CD,FCE的中点GCD上的一点连接DF,EG,AG,∠1=∠2.

(1)CF=2,AE=3,BE的长;

(2)求证:∠CEG=∠AGE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB、CD之间有一动点P,满足0°<∠EPF<180°.

(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?

解:由于点P是平行线AB、CD之间有一动点,因此需要对点P的位置进行分类讨论;如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为______________,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为______________

(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.

①若∠EPF=60°,则∠EQF=_______°.

②猜想∠EPF与∠EQF的数量关系,并说明理由.

③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2与∠DFQ2的角平分线交于点Q3,此次类推,则∠EPF与∠EQ2018F满足怎样的数量关系?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强学生的身体素质,某校规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对该校七年级部分学生参加户外活动的时间进行调查,并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:

(1)填空:这次调查的学生共   人,表示户外活动时间为1小时的扇形圆心角度数是   度;

(2)求参加户外活动的时间为1.5小时的学生人数,并补全频数分布直方图;

(3)若该校七年级有学生600人,请估计该校七年级学生参加户外活动的时间不少于1小时的有多少人?

查看答案和解析>>

同步练习册答案