【题目】如图1,菱形ABCD,,,连接对角线AC、BD交于点O,
如图2,将沿DB平移,使点D与点O重合,求平移后的与菱形ABCD重合部分的面积.
如图3,将绕点O逆时针旋转交AB于点,交BC于点F,
求证:;
求出四边形的面积.
【答案】证明见解析
【解析】
(1)先判断出△ABD是等边三角形,进而判断出△EOB是等边三角形,即可得出结论;
(2)先判断出 ≌△OBF,再利用等式的性质即可得出结论;
(3)借助①的结论即可得出结论.
四边形为菱形,,
,
为等边三角形,
,,
∵AD//A′O,
∴∠A′OB=60°,
为等边三角形,边长,
重合部分的面积:,
在图3中,取AB中点E,
由知,∠EOB=60°,∠E′OF=60°,
∴∠EOE′=∠BOF,
又∵EO=BO,∴∠OEE′=∠OBF=60°,
∴△OEE′≌△OBF,
∴EE′=BF,
∴BE′+BF=BE′+EE′=BE=2;
由知,在旋转过程中始终有△OEE′≌△OBF,
∴S△OEE′=S△OBF,
S四边形OE′BF =.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,分别以AC,BC为边长,在三角形外作正方形ACFG和正方形BCED.若AC=4,AB=6,则EF=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在坐标平面内,已知点A(0,3)、B(6,5),
(1)连接AB,在x轴上确定点P,使PA=PB(用尺规作图,保留作图痕迹,不写作法),并求出P点坐标;
(2)点Q是x轴上的动点,求点Q与A、B两点的距离之和的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中是真命题的是( )
A. 有两边和其中一边的对角对应相等的两个三角形全等
B. 两条平行直线被第三条直线所截,则一组同旁内角的平分线互相垂直
C. 三角形的一个外角等于两个内角的和
D. 等边三角形既是中心对称图形,又是轴对称图形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某农户发展养禽业,准备利用现有的34米长的篱笆靠墙AB(墙长为25米)围成一个面积为120平方米的长方形养鸡场,这个养鸡场的长和宽各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.
(1)求证:△ABC≌△DEF;
(2)指出图中所有平行的线段,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数例如:的友好同轴二次函数为.
请你分别写出,的友好同轴二次函数;
满足什么条件的二次函数没有友好同轴二次函数?满足什么条件的二次函数的友好同轴二次函数是它本身?
如图,二次函数:与其友好同轴二次函数都与y轴交于点A,点B、C分别在、上,点B,C的横坐标均为,它们关于的对称轴的对称点分别为,,连结,,,CB.
若,且四边形为正方形,求m的值;
若,且四边形的邻边之比为1:2,直接写出a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com