将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.
(1)求证:CF∥AB;
(2)求∠DFC的度数.
![]()
![]()
【考点】平行线的判定;角平分线的定义;三角形内角和定理.
【专题】证明题.
【分析】(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;
(2)利用三角形内角和定理进行计算即可.
【解答】(1)证明:∵CF平分∠DCE,
∴∠1=∠2=![]()
∠DCE,
∵∠DCE=90°,
∴∠1=45°,
∵∠3=45°,
∴∠1=∠3,
∴AB∥CF(内错角相等,两直线平行);
(2)∵∠D=30°,∠1=45°,
∴∠DFC=180°﹣30°﹣45°=105°.
【点评】此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.
科目:初中数学 来源: 题型:
如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.
解:因为OD平分∠BOC,
所以∠DOC=
∠ .
因为 ,所以∠ =
∠COA,
所以∠EOD=∠ +∠
=
(∠ +∠ )
=
∠ ,
因为∠AOB是直角,
所以∠EOD= .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com