【题目】知识迁移
我们知道,函数的图像是由二次函数的图像向右平移m个单位,再向上平移n个单位得到.类似地,函数的图像是由反比例函数的图像向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).
理解应用
函数的图像可以由函数的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 .
灵活运用
如图,在平面直角坐标系xOy中,请根据所给的的图像画出函数的图像,并根据该图像指出,当x在什么范围内变化时,≥?
实际应用
某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为;若在(≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x变化的函数关系为.如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?
【答案】(1)理解应用:1,1,(1,1);(2)灵活应用:当﹣2≤x<2时;(3)实际应用:当x=12时,是他第二次复习的“最佳时机点”.
【解析】
试题分析:理解应用:由“知识迁移”得到双曲线的图象平移变换的规律:上加下减.由此得到答案:
灵活应用:由平移规律作出图象;
实际应用:先求出第一次复习的“最佳时机点”(4,1),然后带入y2,求出解析式,然后再求出第二次复习的“最佳时机点”.
试题解析:理解应用:根据“知识迁移”易得,函数的图象可由函数的图象向右平移 1个单位,再向上平移 1个单位得到,其对称中心坐标为 (1,1).故答案为:1,1,(1,1);
灵活应用:将的图象向右平移2个单位,然后再向下平移两个单位,即可得到函数的图象,其对称中心是(2,﹣2).图象如图所示:
由y=﹣1,得,解得x=﹣2.
由图可知,当﹣2≤x<2时,y≥﹣1;
实际应用:
当x=t时,,则由=,解得:t=4,即当t=4时,进行第一次复习,复习后的记忆存留量变为1,∴点(4,1)在函数的图象上,则,解得:a=﹣4,∴,当=,解得:x=12,即当x=12时,是他第二次复习的“最佳时机点”.
科目:初中数学 来源: 题型:
【题目】阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为.
请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;
(2)已知x,y满足方程组.
(i)求的值;
(ii)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,是确定性事件的是( )
A.甲、乙、丙三人随意站成一排,而甲恰好站中间
B.从含有1个次品的10个产品中,随意抽取一个产品恰好是次品
C.早晨,太阳从西方升起
D.明天早晨八点是上班高峰期,学校门前的公路上必塞
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。
问:
(1)设购买乒乓球x盒时,在甲家购买所需多少元?在乙家购买所需多少元?(用含x的代数式表示,并化简)
(2)当购买乒乓球多少盒时,两种优惠办法付款一样?
(3)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师给出一个二次函数,甲、乙两名同学各指出这个函数的一个性质.甲:函数图象的顶点在x轴上;乙:抛物线开口向下;已知这两位同学的描述都正确,请你写出满足上述所有性质的一个二次函数表达式_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.哥哥的身高比弟弟高是必然事件
B.今年中秋节有雨是不确定事件
C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件
D.“彩票中奖的概率为 ”表示买5张彩票肯定会中奖
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com