A
分析:由角平分线的性质易得OE=OF=OD,AE=AF,CE=CD,BD=BF,设OE=OF=OD=x,则CE=CD=x,BD=BF=8-x,AF=AE=6-x,所以6-x+8-x=10,解答即可.
解答:
解:
连接OB,
∵点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,
∴OE=OF=OD,
又∵OB是公共边,
∴Rt△BOF≌Rt△BOD(HL),
∴BD=BF,
同理,AE=AF,CE=CD,
∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,
∴OECD是正方形,
设OE=OF=OD=x,则CE=CD=x,BD=BF=8-x,AF=AE=6-x,
∴BF+FA=AB=10,即6-x+8-x=10,
解得x=2.
则OE=OF=OD=2.
故选A.
点评:此题综合考查角平分线的性质、全等三角形的判定和性质和正方形的判定等知识点,设未知数,并用未知数表示各边是关键.