精英家教网 > 初中数学 > 题目详情

【题目】如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )

A. 等腰梯形B. 直角梯形C. 菱形D. 矩形

【答案】D

【解析】

首先作出图形,根据三角形的中位线定理,可以得到再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.

解:连接ACBD

EFABAD的中点,即EF的中位线.

同理:

等腰梯形ABCD中,

四边形EFGH是菱形.

的中位线,

EF EG

同理,NMEG

EFNM

四边形OPMN是平行四边形.

菱形EFGH中,

平行四边形OPMN是矩形.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在中,AB=AC∠ABC =DBC边上一点,以AD为边作,使AE=AD+=180°

1)直接写出∠ADE的度数(用含的式子表示);

2)以ABAE为边作平行四边形ABFE

如图2,若点F恰好落在DE上,求证:BD=CD

如图3,若点F恰好落在BC上,求证:BD=CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.

(1)求抛物线对应的二次函数的表达式;

(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;

(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).

(1)求该抛物线所对应的二次函数的表达式及顶点M的坐标;

(2)连结CB、CM,过点MMN⊥y轴于点N,求证:∠BCM=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有ABC三地,C地位于AB两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离ykm)与甲车行驶时间th)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们在《有理数》这一章中学习过绝对值的概念:

一般的,数轴上表示数的点与原点的距离叫做数的绝对值,记作.

实际上,数轴上表示数的点与原点的距离可记作,数轴上表示数的点与表示数2的点的距离可记作,那么:

1)①数轴上表示数3的点与表示数1的点的距离可记作 .

②数轴上表示数的点与表示数2的点的距离可记作 .

③数轴上表示数的点与表示数的点的距离可记作 .

2)数轴上与表示数的点的距离为5的点有 个,它表示的数为 .

3)拓展:①当数取值为 时,数轴上表示数的点与表示数的点的距离最小.

②当整数取值为 时,式子有最小值为 .

③当取值范围为 时,式子有最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点S从点A出发,沿线段AB运动至点B后,立即按原路返回,点S在运动过程中速度不变,则以点B为圆心,线段BS长为半径的圆的面积m与点S的运动时间t之间的函数关系图象大致为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图ABC是等边三角形四边形BDEF是菱形其中E=60°,将菱形BDEF绕点B按顺时针方向旋转甲、乙两位同学发现在此旋转过程中有如下结论

线段AF与线段CD的长度总相等

直线AF和直线CD所夹的锐角的度数不变

那么你认为(  )

A. 甲、乙都对 B. 乙对甲不对

C. 甲对乙不对 D. 甲、乙都不对

查看答案和解析>>

同步练习册答案