精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,DAE=EB=D.直线AD与BE平行吗?直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由).

解:直线AD与BE平行,直线AB与DC

理由如下:

∵∠DAE=E,(已知)

,(内错角相等,两条直线平行)

∴∠D=DCE. (两条直线平行,内错角相等)

∵∠B=D,(已知)

∴∠B= ,(等量代换)

.(同位角相等,两条直线平行)

【答案】见解析

【解析】

试题分析:因为DAE=E,所以根据内错角相等,两条直线平行,可以证明ADBE;根据平行线的性质,可得D=DCE,结合已知条件,运用等量代换,可得B=DCE,可证明ABDC

解:直线AD与BE平行,直线AB与DC平行.

理由如下:

∵∠DAE=E,(已知)

ADBE,(内错角相等,两条直线平行)

∴∠D=DCE. (两条直线平行,内错角相等)

∵∠B=D,(已知)

∴∠B=DCE,(等量代换)

ABDC.(同位角相等,两条直线平行)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数y= x的图象与反比例函数y= 的图象交于A(a,﹣2),B两点.
(1)求反比例函数的表达式和点B的坐标;
(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,已知点 .若平移点 到点 ,使以点 为顶点的四边形是菱形,则正确的平移方法是( )

A.向左平移1个单位,再向下平移1个单位
B.向左平移 个单位,再向上平移1个单位
C.向右平移 个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为 ( )

A.3
B.
C.
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,线段AMBC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE

(1)求∠CAM的度数;

(2)若点D在线段AM上时,求证:ADCBEC

(3)当动D直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离ykm)与乙车行驶时间xh)之间的函数关系如图所示.下列说法:乙车的速度是120km/h;②m=160;③H的坐标是(7,80);④n=7.5.其中说法正确的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋中有除颜色外其他完全相同的3个球,每次从袋中摸出一个球,记下颜色后放回搅匀再摸,在摸球试验中得到下表中部分数据:

摸球

总次数

40

80

120

160

200

240

280

320

360

400

摸到黄球的次数

14

23

38

52

67

86

97

111

120

136

摸到黄球的频率

35%

32%

33%

35%

35%

(1)请将上表补充完整(结果精确到1%);

(2)制作折线统计图表示摸到黄球的频率的变化情况;

(3)估计从袋中摸出一个球是黄球的概率是多少.

查看答案和解析>>

同步练习册答案