精英家教网 > 初中数学 > 题目详情

【题目】如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较短直角边长为5cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.

(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;

(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;

(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1DE于点H,请证明:AH=DH

【答案】(1) 5cm;(2);(3)证明见解析.

【解析】

(1)根据题意,分析可得:图形平移的距离就是线段BF的长,进而在Rt△ABC中求得BF=5cm,即图形平移的距离是5cm;

(2)在Rt△EFD中,求出FD的长,根据直角三角形的性质,可得:FG=FD,即可求得FG的值;

(3)借助平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,容易证明.

(1)图形平移的距离就是线段BC的长,

∵在RtABC中,斜边长为10cm,BAC=30°,

BC=5cm,

∴平移的距离为5cm.

(2)∵∠FA=30°,

∴∠D=30°.

∴∠

RtEFD中,ED=10 cm,

FD=

cm.

(3)△AHE中,∵

FD=FA,所以EF=FB=FB1,即AE=D

又∵

∴△≌△(AAS),

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线E:y2=4x的准线为l,焦点为F,O为坐标原点.
(1)求过点O,F,且与l相切的圆的方程;
(2)过F的直线交抛物线E于A,B两点,A关于x轴的对称点为A′,求证:直线A′B过定点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f(x0)=3,x0∈( ),则sinx0的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知椭圆 内有一点M(2,1),过M的两条直线l1 , l2分别与椭圆E交于A,C和B,D两点,且满足 (其中λ>0,且λ≠1),若λ变化时,AB的斜率总为 ,则椭圆E的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.
(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据: =25, =5.36, =0.64
回归方程 = x+ 中斜率和截距的最小二乘估计公式分别为:
= =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知f(x)=x2(1nx﹣a)+a,则下列结论中错误的是(
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= (e为自然对数的底数),曲线y=f(x)在(1,f(1))处的切线与直线4x+3ey+1=0互相垂直. (Ⅰ)求实数a的值;
(Ⅱ)若对任意x∈( ,+∞),(x+1)f(x)≥m(2x﹣1)恒成立,求实数m的取值范围;
(Ⅲ)设g(x)= ,Tn=1+2[g( )+g( )+g( )+…+g( )](n=2,3…).问:是否存在正常数M,对任意给定的正整数n(n≥2),都有 + + +…+ <M成立?若存在,求M的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在数列{an}中,a1=4,an>0,前n项和为Sn , 若
(1)求数列{an}的通项公式;
(2)若数列 的前n项和为Tn , 求Tn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AB=4 ,点C为半圆AB上一动点,以BC为边向⊙O外作正△BCD(点D在直线AB的上方),连接OD,则线段OD的长(
A.随点C的运动而变化,最大值为4
B.随点C的运动而变化,最大值为4
C.随点C的运动而变化,最小值为2
D.随点C的运动而变化,但无最值

查看答案和解析>>

同步练习册答案